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Overview
• This work revisits the direct sampler proposed by Walker, Laud,

Zantedeschi, and Damien (2011).
• It was motivated by Bayesian regression models where the data have

added noise for the purpose of disclosure avoidance.
• Differential privacy (DP) has become increasingly popular for its ability

to mathematically bound risks to unwanted disclosure in the released
data (Dwork and Roth, 2014).

• The U.S. Census Bureau is evaluating use of DP for public release of
the data collected in the 2020 Decennial Census (Abowd, 2018;
Garfinkel et al., 2018).

• Several noise mechanisms under consideration achieve privacy by adding
noise variates.

• Relatively simple regression models including DP noise may lead to
conditional distributions which are nontrivial to sample.

• The direct sampler will provide a reliable way to draw from these
conditionals and therefore construct a Gibbs sampler.
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Overview

• The most basic implementation of direct sampling (BD sampler)
described in Walker et al. (2011) is easy to implement, but poor
performance is possible under the situations we encounter.

• Raim (2021b) proposes a “customized direct sampler” (CD sampler),
which addresses some of these issues. It assumes certain restrictions on
target distributions.

• We will:
1. Briefly review DP preliminaries.
2. Review the BD sampler and problematic situations.
3. Discuss the proposed CD sampler.
4. Show the sampler in the context of a regression modeling application.
5. Walk through a simulation study comparing inference based on a noisy

release and the original sensitive data.
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Differential Privacy Preliminaries
• The Laplace mechanism Dwork and Roth (2014, Chapters 2–3) is one

of the fundamental mechanisms in differential privacy (DP).

• A few definitions:
1. Let X ∼ Lap(µ, λ) denote a random variable with Laplace distribution

g(x) = 1
2λe−|x−µ|/λ.

2. Privacy loss budget ϵ > 0 quantifies how much protection the data will
receive.

3. Histogram x contains distinct data values and their frequencies.
4. A query f maps an x to Rk .
5. The L1 sensitivity of a query f is

∆f = max∥f (x) − f (y)∥1, s.t. ∥x − y∥1 = 1.

• Given a privacy loss budget ϵ, a histogram x, and query function f , the
Laplace mechanism is

MLap(x | f , ϵ) = f (x) + ξ, ξ1, . . . , ξk
iid∼ Lap(0,∆f /ϵ).
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Differential Privacy Preliminaries

• A randomized algorithm M is said to be (ϵ, δ)-differentially private if

P[M(x) ∈ S] ≤ eϵ P[M(y) ∈ S] + δ

for all S ⊆ range(M) and all histograms x, y such that ∥x − y∥1 ≤ 1.

• Theorem. The Laplace mechanism is (ϵ, 0) differentially private.
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Differential Privacy Preliminaries
Proof. Let x, y be such that ∥x − y∥ ≤ 1. Let px and py denote the density
functions of MLap(x | f , ϵ) and MLap(y | f , ϵ). For any ξ ∈ Rk ,

px (ξ)
py (ξ) =

k∏
i=1

exp[−ϵ|f (x)i − ξi |/∆f ]
exp[−ϵ|f (y)i − ξi |/∆f ]

=
k∏

i=1
exp

{
|f (y)i − ξi | − |f (x)i − ξi |

∆f /ϵ

}

≤
k∏

i=1
exp

{
|f (y)i − f (x)i |

∆f /ϵ

}
= exp

{
∥f (y) − f (x)∥1

∆f /ϵ

}
≤ exp(ϵ).

Then for measureable S ⊆ Rk ,

px (ξ) ≤ eϵpy (ξ) =⇒ P[MLap(x | f , ϵ) ∈ S] ≤ eϵ P[MLap(y | f , ϵ) ∈ S].
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Other Additive Noise Mechanisms

• Other mechanisms add randomly generated noise to a query to protect
privacy.

• Gaussian mechanism (Dwork and Roth, 2014, Appendix A) adds
N(0, τ 2) noise.

• Double Geometric mechanism (Ghosh et al., 2012) adds noise from
DGeom(ρ), whose density is f (x) = ρ

2−ρ (1 − ρ)|x | · I(x ∈ Z).

• Discrete Gaussian mechanism (Canonne et al., 2020) adds noise from
the density f (x) ∝ exp

{
−x2/2τ 2} · I(x ∈ Z).

• Proofs for other cases are more involved than Laplace mechanism, and
more complicated criteria are usually obtained.

• A user of the protected data has full knowledge of the mechanism,
including parameters (Gong, 2020).
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Weighted Densities

• To draw from a weighted density

f (x) = w(x)g(x)
ψ

, x ∈ Ω.

• ψ =
∫

Ω w(x)g(x)dν(x) is the normalizing constant.

• Ω is the support of random variable x ∼ f (x).

• ν(·) is a dominating measure so that x may be discrete or continuous.

• f can be considered a modified version of a base distribution g . The
weight function w : Ω → [0,∞) emphasizes or deemphasizes parts of
the space.
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General Bayesian Example

• Consider a standard Bayesian model

y ∼ f (y | θ), θ ∼ f (θ).

• The posterior distribution

f (θ | y) = f (y | θ)f (θ)
f (y)

is a weighted density.

• Here it seems most natural to take f (θ) as the base distribution and
f (y | θ) as the weight function.
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Disclosure Avoidance Noise Example
• Consider a Bayesian regression model in the form of

zi = yi + ξi , ξi
ind∼ Lap(0, λi),

log yi = x⊤
i β + γi , γi

iid∼ N(0, σ2),

for i = 1, . . . , n, where xi ∈ Rd and θ = (β, σ2) has prior
β ∼ N(0, σ2

βI) and σ2 ∼ IG(aσ, bσ).

• Laplace density with known λi ,

fLap(ξ | λi) = 1
2λi

e−|ξ|/λi , ξ ∈ R,

comes from the DP noise.

• The density of a Lognormal random variable y ∼ LN(µ, σ2) is

fLN(y | µ, σ2) = 1
yσ

√
2π

exp
{

− 1
2σ2 (log y − µ)2

}
, y > 0.
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Disclosure Avoidance Noise Example
Routine Gibbs Steps

• Given ξ = (ξ1, . . . , ξn), draws for θ may be derived routinely in two
additional Gibbs sampling steps, and are found to have familiar forms.

• [β | —] ∼ Nd(ϑ,Ω−1)

Ω = σ−2X⊤X + σ−2
β Id , ϑ = Ω−1

(
σ−2

n∑
i=1

xi log yi

)
,

where X = (x1 · · · xn)⊤ and Id is the d × d identity matrix.

• [σ2 | —] ∼ IG(a∗, b∗)

a∗ = aσ + n
2 , b∗ = bσ + 1

2

n∑
i=1

(log yi − x⊤
i β)2.
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Disclosure Avoidance Noise Example
Weighted Densities

• The joint distribution of all random quantities is

f (z, ξ,β, σ2) =
[ n∏

i=1
fLN(zi − ξi | µi , σ

2)fLap(ξi | 0, λi)
]

f (θ),

where µi = x⊤
i β.

• The conditional distribution of [ξi | —] is then

f (ξi | —) ∝ fLN(zi − ξi | µi , σ
2)fLap(ξi | 0, λi)

∝ 1
zi − ξi

exp
{

− 1
2σ2 [log(zi − ξi) − µi ]2

}
· I(zi > ξi)︸ ︷︷ ︸

w(ξi |zi ,µi ,σ2)

1
2λi

e−|ξi |/λi︸ ︷︷ ︸
g(ξi |λi )

.

• Its normalizing constant is∫ zi

−∞

1
zi − v exp

{
− 1

2σ2 [log(zi − v) − µi ]2
}

1
2λi

e−|v |/λi dv .
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Some Relevant Literature
• Bowen and Liu (2020) review noise mechanisms for disclosure

avoidance, including some non-additive mechanisms.
• Charest (2011) considers Bayesian modeling under a DP mechanism for

binary data. Metropolis-Hastings is used to sample sensitive data within
a Gibbs sampler.

• Klein and Sinha (2019) consider generation and analysis of multiply
imputed data under noise from a Laplace mechanism, taking very large
and very small values to be censored.

• Gong (2019) uses Approximate Bayesian Computation and Monte-Carlo
Expectation Maximization to analyze data with additive DP noise.

• For simple linear regression, Gong (2020) provides some theoretical
insight about biases when noise mechanism is ignored.

• Evans and King (2020+) propose a version of ordinary least squares
regression where estimators are consistent under added DP noise.

• Bernstein and Sheldon (2019) formulate a Gibbs sampler for linear
regression with noise from a Laplace mechanism. Noise is drawn as
augmented data via a scale mixture of Normals.
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Direct Sampling Idea
• Back to our weighted density f (x) = w(x)g(x)/ψ · I(x ∈ Ω).

1. Let c = supx∈Ω w(x).
2. Let Au = {x ∈ Ω : w(x) > uc}.

• Objective: augment a random variable u so that [x , u] is easier to draw
than x . Especially, avoid computing ψ.

• Assume that [u | x ] ∼ Uniform(0,w(x)/c), so that

f (u | x) = c
w(x) I(0 < u < w(x)/c) = c

w(x) I(x ∈ Au).

• The joint density of [x , u] is then

f (x , u) = c
ψ

g(x) I(x ∈ Au).

• The marginal density of u is then

p(u) = c
ψ

P(Au), u ∈ [0, 1], where P(Au) =
∫

I(x ∈ Au)g(x)dν(x).

• The distribution of [x | u] is then

f (x | u) = g(x)
P(Au) I(x ∈ Au).
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Direct Sampling Idea

• Now we can take a draw from [x , u] using

u ∼ p(u) = c
ψ

P(Au), x ∼ f (x | u) = g(x)
P(Au) I(x ∈ Au).

• Here are a few important features about the density p(u).
1. The support of u is bounded in [0, 1].
2. P(Au) is monotonically nonincreasing in u.
3. A0 ≡ supp w so that P(A0) =

∫
Ω I(w(x) > 0)g(x)dν(x).

4. A1 is an empty set so that P(A1) = 0.
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Basic Direct Sampler
Drawing from p(u)

• To draw u ∼ p(u), consider the following.
• Using knot points uk = k/N, compute

q(uk) = P(Auk )∑N
ℓ=0 P(Auℓ

)
, k = 0, 1, . . . ,N.

N is prespecified.

• Sample k ∼ Discrete
(

(0, 1, . . . ,N), (q(u0), . . . , q(uN))
)

.

• Given k, sample u ∼ Beta(k + 1,N − k + 1).
• The density of u is then proportional to

N∑
k=0

uk(1 − u)N−k

B(k + 1,N − k + 1)q(uk) ∝
N∑

k=0
q(uk)

(
N
k

)
uk(1 − u)N−k ,

• This can be seen as an approximation to p(u) by Bernstein polynomials
(Rivlin, 1981).
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Basic Direct Sampler
Drawing from f (x | u)

• Given u, we must draw x from

f (x | u) = g(x)
P(Au) I(x ∈ Au).

• Typically, it is easy to draw from the base distribution g(x).
• Take candidate draws from x∗ ∼ g(x) and reject until x∗ ∈ Au.
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Bernstein Polynomials

• Recall Bernstein’s version of the Weierstrass Approximation Theorem
(e.g. Resnick, 1999). Let q : [0, 1] → R be a continuous function and
define the polynomial

Bn(x) =
n∑

k=0
q
(

k
n

)(
n
k

)
xk(1 − x)n−k ,

so that Bn(x) = E[q(Sn/n)] where Sn =
∑n

i=1 Ti and T1, . . . ,Tn is an
iid sample from Ber(x).

• Then supx∈[0,1] |Bn(x) − q(x)| → 0 as n → ∞.
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Some Issues with the BD Sampler

• The support of p may be contained in [0, uH ] for a very small uH > 0.

• The standard Bernstein approximation assumes knots are evenly spaced.
This can be less than ideal; e.g., p(u) can be like a step function.

• The simple rejection method to draw from the truncated g can be very
inefficient, especially when Au has small probability under g .
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A Customized Direct Sampler

• To address these issues, we propose the following.

• A step function instead of Bernstein polynomials to approximate p(u).

• Focus approximation effort on [uL, uH ] ⊆ [0, 1], where p(u) is varying.

• Choose the knots sequentially so that each knot placement decreases
the approximation error as much as possible.

• Use the CDF method to draw x from f (x | u) without rejections.
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A Customized Direct Sampler

• We make the following assumptions.
1. w is unimodal, so that:

a. We can identify the maximum value c.
b. Au = {x ∈ Ω : w(x) > uc} is an interval with endpoints {x1(u), x2(u)}.

2. For g ,
a. Exact draws can readily be generated.
b. Quantiles can be identified.

• Ideally, these operations can be computed with little work.
• These assume a univariate w and g .
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Bisection Search

Bisection Search Algorithm.
x = mid(xL, xH)
while dist(xL, xH) > δ do

xL = ζ(x) · xL + [1 − ζ(x)] · x
xH = ζ(x) · x + [1 − ζ(x)] · xH
x = mid(xL, xH)

return x

• ζ(x) is a step function that activates between the given [xL, xH ].
• mid(x , y) is a midpoint function, such as f (x) = (x + y)/2.
• dist(x , y) is a distance function, such as f (x) = |x − y |.
• To find the activation point x∗ = min{x ∈ [xL, xH ] : ζ(x) = 1}.

This is used to find [uL, uH ] containing the “descent” of P(Au).
• uL is the smallest u ∈ [0, 1] such that P(Au) < P(A0).
• uH is the smallest u ∈ [0, 1] such that P(Au) = 0.
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Bisection Search
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Step Function
• Let u0 < · · · < uN be knot points with u0 ≡ uL and uN ≡ uH .

• To approximate the unnormalized P(Au), consider the function

h∗(u) = P(Au0) · I(0 ≤ u < u0) +
N−1∑
j=0

P(Auj ) · I(uj ≤ u < uj+1).

• A density is obtained using h(u) = h∗(u)/a with

a =
∫ 1

0
h∗(u)du = P(Au0) · u0 +

N−1∑
j=0

P(Auj ) · (uj+1 − uj),

• Expressions for the CDF and quantile function of h can also be obtained.

• The quantile function can be used to draw from h.

• Because the quantile function is piecewise linear, bisection search can
be used to quickly identify the piece containing a given probability.

Andrew M. Raim (CSRM) Direct Sampling in Bayesian Regression Models with Additive Disclosure Avoidance Noise A Customized Direct Sampler 26/57



Approximation Error Bound

• We can bound the total variation distance between the h and p
distributions.

• Let Rj represent the rectangle in R2 whose upper-left point is
(uj−1,P(Auj−1)) and lower-right point is (uj ,P(Auj )).

• The area of Rj is |Rj | =
[
P(Auj−1) − P(Auj )

]
(uj − uj−1).

Result
Let B denote the collection of measurable subsets of [0, 1]; then

sup
B∈B

∣∣∣∣∫
B

h(u)du −
∫

B
p(u)du

∣∣∣∣ ≤ c
ψ

N∑
j=1

|Rj |.
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Knot Selection
• Equally-spaced knots uj = uL + (j/N)(uH − uL) are simple and easy to

compute, but can fail to capture important features of p(u).
• Our bound motivates selecting the knots u1, . . . , uN−1 sequentially to

reduce the largest |Rj |. This motivates the following algorithm.

Small Rectangles Algorithm.
Let u(0) = uL, and u(1) = uH .
for i = 1, . . . ,N − 1 do

Let u0 < . . . < ui be sorted u(0), . . . , u(i).
Let |Rj | = {P(Auj−1) − P(Auj )}(uj − uj−1) for j = 1, . . . , i .
Let j∗ = argmax

j=1,...,i
|Rj |.

Let u(i+1) = mid(uj∗−1, uj∗).
Let u0 < . . . < uN be sorted u(0), . . . , u(N).
return (u0, . . . , uN).

• The cost of this over equally-spaced knots is increased computation.
• To avoid repeated sorting of the |Rj |’s, we can use a priority queue.
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Knot Selection Example

• Recall our conditional distribution from the disclosure avoidance
example.

f (ξ | —) ∝ fLN(z − ξ | µ, σ2)fLap(ξ | 0, λ)

∝ 1
z − ξ

exp
{

− 1
2σ2 [log(z − ξ) − µ]2

}
· I(z > ξ)︸ ︷︷ ︸

w(ξ|z,µ,σ2)

1
2λe−|ξ|/λ︸ ︷︷ ︸

g(ξ|λ)

.

(Subscript i has been omitted.)
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Figure: Plots of P(Au) (—) using Lognormal(0, 1) weight function and Laplace(0, 0.4) base
distribution. Top plots use z = 200 and bottom plots use z = 2. N + 1 = 6 knots (•) are shown with
equal steps (left) and Small Rectangles (right).



Accept-Reject Algorithm
• We constructed h∗ so that h∗(u) ≥ P(Au) for all u ∈ [0, 1].

• This motivates using h∗ as an envelope for rejection sampling, to take
exact draws from p(u).

• For any u ∈ [0, 1],

P(Au)
h∗(u) ≤ 1.

• Taking v ∼ Uniform(0, 1), the candidate u ∼ h(u) is accepted as a draw
from p(u) if v < P(Au)

h∗(u) . Otherwise, repeat.

• Normalizing the ratio of densities yields:
1. ψ/c

a is the probability of accepting each proposed u.
2. a

ψ/c is the expected number of proposals needed for one acceptance.

• A rejected u may be added to the knot points to improve the envelope,
at the cost of more bookkeeping.
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Drawing from [x | u]

• Assuming unimodal w , I(x ∈ Au) = I(x1(u) < x < x2(u)), and

f (x | u) = g(x)
P(Au) I(x ∈ Au) = g(x) I(x1(u) < x < x2(u))

G(x2(u)−) − G(x1(u)) .

• The associated CDF is

F (x | u) = G(x) − G(x1(u))
G(x2(u)−) − G(x1(u)) , x1(u) < x < x2(u).

• The quantile function is

F −(φ | u) = G−((b − a)φ+ a)

where G− is the quantile function for density g , a = G(x1(u)), and
b = G(x2(u)−).

• An exact draw from f (x | u) can be obtained via the inverse CDF
method: draw v ∼ Uniform(0, 1) and take x = F −(v | u).
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Back to Disclosure Avoidance Example
• We wish to draw from

f (ξ) ∝ 1
z − ξ

exp
{

− 1
2σ2 [log(z − ξ) − µ]2

}
· I(z > ξ)︸ ︷︷ ︸

w(ξ|z,µ,σ2)

1
2λe−|ξ|/λ.︸ ︷︷ ︸

g(ξ|λ)

• The maximum value of w(ξ) is c = exp{−(µ− σ2/2)}, attained when
ξ = z − exp{µ− σ2}.

• The set Au = {ξ ∈ Ω : w(ξ) > uc} is an interval with endpoints

{ξ1(u), ξ2(u)} = z − exp
{

(µ− σ2) ±
[
σ4 − 2µσ2 + 2σ2 log(cu)

]1/2}
.

• CDF and quantile functions of g are respectively

G(ξ | λ) = 1
2 + 1

2 sgn(ξ)[1 − e−|ξ|/λ], and

G−(φ | λ) = −λ sgn
(
φ− 1

2

)
log
(

1 − 2
∣∣∣∣φ− 1

2

∣∣∣∣) .
• Exact draws can be generated from g using standard software libraries.



Code Example

• Use DirectSampling package (Raim, 2021a) to draw from

f (ξ) ∝ 1
z − ξ

exp
{

− 1
2σ2 [log(z − ξ) − µ]2

}
· I(z > ξ)︸ ︷︷ ︸

w(ξ|z,µ,σ2)

1
2λe−|ξ|/λ.︸ ︷︷ ︸

g(ξ|λ)

Defaults in the following are: N = 100 and method = "small_rects".

• Set up: the two get functions are shown in the next slides.
library(DirectSampling)

w = get_lognormal_weight(z = 100, mu = 5, sigma2 = 3^2)
g = get_laplace_base(lambda = 0.2)

• Draw a sample.
R> direct_sampler(n = 20, w, g)
[1] -0.11185683 0.03854990 -0.01441820 -0.22186401 -0.10575271 -0.06173714
[7] 0.17074268 -0.06516397 0.11328199 0.11903198 -0.05490415 0.13957360

[13] 0.02124918 0.05218875 0.06050365 -0.07118187 -0.27217647 -0.27952874
[19] 0.13179049 0.75207048
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Code Example
• Get the step function approximation.

step = Stepdown$new(w, g)
x = exp( step$get_log_x_vals() )
hx = exp( step$get_log_h_vals() )
plot(x, hx)
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get_lognormal_weight = function(z, mu, sigma2)
{

# The maximum value of the function log w(x)
log_c = -(mu - sigma2 / 2)

# Evaluate the weight function
eval = function(x, log = FALSE) {

n = length(x)
out = rep(-Inf, n)
idx = which(x < z)
out[idx] = -log(z-x[idx]) - (log(z-x[idx]) - mu)^2 / (2*sigma2)
if (log) { return(out) } else { return(exp(out)) }

}

# Return the roots of the equation w(x) = a in increasing order.
roots = function(log_a) {

x1 = z - exp((mu - sigma2) + sqrt(sigma2 * (sigma2 - 2*(mu + log_a))))
x2 = z - exp((mu - sigma2) - sqrt(sigma2 * (sigma2 - 2*(mu + log_a))))
c(x1, x2)

}

ret = list(log_c = log_c, roots = roots, eval = eval)
class(ret) = "weight"
return(ret)

}
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get_laplace_base = function(lambda)
{

density = function(x, log = FALSE) {
d_laplace(x, 0, lambda, log)

}

# Compute Pr(x1 < X < x2) probability where X ~ Laplace(0, lambda)
pr_interval = function(x1, x2) {

p_laplace(x2, 0, lambda) - p_laplace(x1, 0, lambda)
}

# Quantile function of Laplace truncated to (x_min, x_max)
q_truncated = function(p, x_min = -Inf, x_max = Inf) {

p_min = p_laplace(x_min, 0, lambda)
p_max = p_laplace(x_max, 0, lambda)
x = q_laplace((p_max - p_min)*p + p_min, 0, lambda)
max(x_min, min(x, x_max))

}

r_truncated = function(n, x_min = -Inf, x_max = Inf) {
u = runif(n)
x = numeric(n)
for (i in 1:n) {

x[i] = q_truncated(u[i], x_min, x_max)
}
return(x)

}

ret = list(pr_interval = pr_interval, q_truncated = q_truncated,
r_truncated = r_truncated, density = density)

class(ret) = "base"
return(ret)

}
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Regression Model Application
• We can now formulate a Gibbs sampler for a regression model with

agency noise.
• The following scenario uses a Double Geometric noise mechanism for

the outcome and a Laplace mechanism for the first covariate xi1. The
second covariate xi2 is observed without noise:

ỹi = yi + ξy
i , ξy

i
ind∼ DGeom(ρy

i ),

x̃i1 = xi1 + ξx
i , ξx

i
ind∼ Lap(0, λx

i ),

log yi = xi1β1 + xi2β2 + γi , γi
iid∼ N(0, σ2),

for i = 1, . . . , n.
• To complete the model specification, take the prior to be

β ∼ N2(0, σ2
βI2), σ2 ∼ IG(aσ, bσ)

with σβ = 10, aσ = 2, and bσ = 10.
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Regression Model Application

• To derive a Gibbs sampler, consider the joint distribution of all random
variables, factorized as

f (ỹ , y , X̃ , ξx ,θ) = f (ỹ | y) · f (y | X̃ , ξx ,θ) · f (ξx ) · f (θ)

with

f (ỹ | y) =
n∏

i=1
fDGeom(ỹi − yi | ρy

i ),

f (ξx ) =
n∏

i=1
fLap(ξx

i | 0, λx
i ),

f (y | X̃ , ξx ,θ) =
n∏

i=1
fLN(yi | x⊤

i· β, σ2),

f (θ) = fN(β | 0, σ2
βI2) · fIG(σ2 | aσ, bσ).
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Regression Model Application
• We routinely obtain the conditionals:

1. [β | —] ∼ N2(ϑ, Ω−1) with Ω = σ−2X⊤X + σ−2
β I2 and

ϑ = Ω−1 (σ−2∑n
i=1 xi· log yi

)
,

2. [σ2 | —] ∼ IG(a∗, b∗) with a∗ = aσ + n/2 and
b∗ = bσ + 1

2

n∑
i=1

(log yi − x⊤
i· β)2.

• For the unobserved outcomes,

f (y | —) ∝
n∏

i=1
fLN(yi | x⊤

i· β, σ2) · fDGeom(ỹi − yi | ρy
i )

∝
n∏

i=1

1
yi

exp
{

− 1
2σ2

[
log yi − x⊤

i· β
]2} I(yi ≥ 0)︸ ︷︷ ︸

w(yi |x⊤
i· β,σ2)

· ρy
i

2 − ρy
i

(1 − ρy
i )|ỹi −yi |︸ ︷︷ ︸

g(ỹi −yi |ρy
i )

,

so that each yi can be drawn independently within the Gibbs sampler
via the direct sampler.
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Regression Model Application

• To sample noise ξx for covariate x·1,

f (ξx | —) ∝
n∏

i=1
fLN(yi | x⊤

i· β, σ2)
n∏

i=1
fLap(ξx

i | 0, λx
i )

∝
n∏

i=1
exp

{
− 1

2τ 2 [(x̃i1 − ξx
i ) − ϑi1]2

}
︸ ︷︷ ︸

w(ξx
i |x̃i1,ϑi1,τ 2)

1
2λx

i
exp

{
− 1
λx

i
|ξx

i |
}

︸ ︷︷ ︸
g(ξx

i |λx
i )

,

where τ 2 = σ2/β2
1 and ϑi1 = β−1

1 (log yi − xi2β2).

• Now ξx
1 , . . . , ξ

x
n may be drawn independently within this step of the

Gibbs sampler via the direct sampler.

• Note: use of a transformed x in the regression will change the
conditional distribution!
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Simulation

• Using the Gibbs sampler, we can compare inference based on the noisy
releases versus using the sensitive data:

1. Algorithm 2: the full sampler we just derived.
2. Algorithm 4: the sampler with y and x·1 observed.

• Settings: n = 200, β = (5,−1), σ = 1, with ρy
i ≡ ρ ∈ {0.01, 0.1, 0.4}

and λx
i ≡ λ ∈ {0.05, 0.10, 0.20}.

• Covariates xij ∼ N(0, 1) are generated independently for j = 1, 2 and
i = 1, . . . , n.

• Take the Lognormal regression model to be the (known)
data-generating model, up to the parameter values.

• Algorithms 2 and 4 are used to produce a chain of 2,000 draws of θ,
discarding the first 1,000 draws as burn-in and saving the remaining
R = 1,000 draws.
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Simulation

• The simulation is repeated S = 500 times to produce realizations ỹ (s)

and X̃ (s), and MCMC draws θ(r ,s) = (β(r ,s), σ2(r ,s)) for r = 1, . . . ,R
and s = 1, . . . ,S from each algorithm.

• Mean-squared error to summarize the posterior distribution of θ relative
to the true data-generating θ0:

MSE(s) = 1
R

R∑
r=1

∥θ(r ,s) − θ0∥2 ≈
∫

∥θ − θ0∥2f (θ | ỹ (s), X̃ (s))dθ.
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(a) ρ = 0.01, λ = 0.2.
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(b) ρ = 0.01, λ = 0.05.
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(c) Noise-free.

Figure: Empirical density—based on 1,000 draws—of the posterior distribution of
β, for a particular data realization in Section ??. Data generating parameter values
were β = (5, −1), ρ = 0.01, and σ = 1. (a) and (b) adjust for agency noise via
Algorithm ??, while (c) utilizes Algorithm ?? with sensitive data observed.
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(a) λ = 0.2.
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(b) λ = 0.05.

Figure: Traceplots of σ2 draws for a particular data realization. The black and grey
lines correspond to Algorithms 2 and 4, respectively, and red dashed lines mark
true data-generating value σ2 = 1.
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(c) ρ = 0.01, λ = 0.05.

Figure: The empirical density of MSE(s) over S = 500 simulation repetitions. Solid
line and dashed lines represent Algorithms 2 and 4, respectively.
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(c) ρ = 0.1, λ = 0.05.

Figure: The empirical density of MSE(s) over S = 500 simulation repetitions. Solid
line and dashed lines represent Algorithms 2 and 4, respectively.
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(c) ρ = 0.4, λ = 0.05.

Figure: The empirical density of MSE(s) over S = 500 simulation repetitions. Solid
line and dashed lines represent Algorithms 2 and 4, respectively.
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Conclusions
• We investigated some customizations to the direct sampler from Walker

et al. (2011).
• This allowed us to implement a Gibbs sampler for Lognormal regression

with additive DP noise for the outcome and/or covariates.
- Avoids rejections.
- Avoids manual tuning.

• Implementation is not trivial. E.g., care is required with floating point
operations.

• Computations are somewhat heavy.
- Timing for one run of the Gibbs sampler on our example.
- Intel Core i7–2600 3.40 GHz workstation with four CPU cores.
- 129.29 seconds total.
- 70.29 seconds to draw y ’s.
- 57.67 seconds to draw ξx ’s.

• Can we skip this and just use Stan (Carpenter et al., 2017)?
• Census 2020 data involves tabulations over geography, race, and other

interesting relationships.
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Thank You!

Andrew M. Raim
andrew.raim@census.gov

Andrew Raim. Direct Sampling, 2021a. R package version 0.1.0.
https://github.com/andrewraim/DirectSampling.

Andrew M. Raim. Direct sampling in Bayesian regression models with
additive disclosure avoidance noise. Research Report Series: Statistics
#2021-01, Center for Statistical Research and Methodology, U.S. Census
Bureau, 2021b. https://www.census.gov/library/working-papers/
2021/adrm/RRS2021-01.html.

Andrew M. Raim (CSRM) Direct Sampling in Bayesian Regression Models with Additive Disclosure Avoidance Noise Conclusions 52/57

andrew.raim@census.gov
https://github.com/andrewraim/DirectSampling
https://www.census.gov/library/working-papers/2021/adrm/RRS2021-01.html
https://www.census.gov/library/working-papers/2021/adrm/RRS2021-01.html


References I
John M. Abowd. The U.S. Census Bureau adopts differential privacy. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, page 2867, New York, NY, USA, 2018.
Association for Computing Machinery.

Garrett Bernstein and Daniel R Sheldon. Differentially private Bayesian linear
regression. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 525–535. Curran Associates, Inc., 2019.

Claire McKay Bowen and Fang Liu. Comparative study of differentially private
data synthesis methods. Statistical Science, 35(2):280–307, 2020.

Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete
Gaussian for differential privacy, 2020. https://arxiv.org/abs/2004.00010.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A probabilistic programming language. Journal of Statistical Software, 76
(1):1–32, 2017.

Anne-Sophie Charest. How can we analyze differentially-private synthetic datasets?
Journal of Privacy and Confidentiality, 2(2), 2011.

Andrew M. Raim (CSRM) Direct Sampling in Bayesian Regression Models with Additive Disclosure Avoidance Noise Conclusions 53/57

https://arxiv.org/abs/2004.00010


References II

Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential
Privacy. Now Publishers Inc, 2014.

Georgina Evans and Gary King. Statistically valid inferences from differentially
private data releases, with application to the Facebook URLs dataset, 2020+.
https://gking.harvard.edu/dpd.

Simson L. Garfinkel, John M. Abowd, and Sarah Powazek. Issues encountered
deploying differential privacy. In Proceedings of the 2018 Workshop on Privacy
in the Electronic Society, WPES’18, pages 133–137, New York, NY, USA, 2018.
Association for Computing Machinery.

Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally
utility-maximizing privacy mechanisms. SIAM Journal on Computing, 41(6):
1673–1693, 2012.

Ruobin Gong. Exact inference with approximate computation for differentially
private data via perturbations, 2019. https://arxiv.org/abs/1909.12237.

Ruobin Gong. Transparent privacy is principled privacy, 2020.
https://arxiv.org/abs/2006.08522.

Andrew M. Raim (CSRM) Direct Sampling in Bayesian Regression Models with Additive Disclosure Avoidance Noise Conclusions 54/57

https://gking.harvard.edu/dpd
https://arxiv.org/abs/1909.12237
https://arxiv.org/abs/2006.08522


References III

Martin Klein and Bimal Sinha. Multiple imputation for parametric inference under
a differentially private laplace mechanism. Technical Report Statistics
#2019-05, Center for Statistical Research and Methodology, U.S. Census
Bureau, 2019. https:
//www.census.gov/library/working-papers/2019/adrm/RRS2019-05.html.

Sidney I. Resnick. A Probability Path. Birkhäuser, 1999.
Theodore J. Rivlin. An Introduction to the Approximation of Functions. Dover,

1981.
Stephen G. Walker, Purushottam W. Laud, Daniel Zantedeschi, and Paul Damien.

Direct sampling. Journal of Computational and Graphical Statistics, 20(3):
692–713, 2011.

Andrew M. Raim (CSRM) Direct Sampling in Bayesian Regression Models with Additive Disclosure Avoidance Noise Conclusions 55/57

https://www.census.gov/library/working-papers/2019/adrm/RRS2019-05.html
https://www.census.gov/library/working-papers/2019/adrm/RRS2019-05.html


Slice Sampler
For Continuous Univariate Target Distributions

• Suppose we wish to draw X ∼ f̄ (x)/C where f̄ (x) is an unnormalized
continuous density and C =

∫
R f̄ (x)dx .

• Consider the joint density

f (x , u) = 1
C I(0 < u ≤ f̄ (x)).

We can verify that
∫

f (x , u)du = f (x).
• From the joint density, we get conditionals

f (u | x) ∝ I(0 < u ≤ f̄ (x)),
f (x | u) ∝ I(u ≤ f̄ (x))

Therefore U | X ∼ Uniform(0, f̄ (x)) and X | U follows a uniform dist’n
on the set Su = {x ∈ R : f̄ (x) ≥ u}.

• A slice sampler is a Gibbs sampler which iterates between these steps.
• C does not need to be computed. The difficulty is usually to obtain Su.



Slice Sampler
For Discrete Univariate Target Distributions

• Now suppose we wish to draw X ∼ f̄ (x)/C where f̄ (x) is an
unnormalized discrete density and C =

∑
x∈Z f̄ (x)dx .

• Again, start with the joint density

f (x , u) = 1
C I(0 < u ≤ f̄ (x)).

• From the joint density, we get conditionals

f (u | x) ∝ I(0 < u ≤ f̄ (x)),
f (x | u) ∝ I(u ≤ f̄ (x))

As before, U | X ∼ Uniform(0, f̄ (x)).
• Now X | U follows a discrete uniform distribution on the set

Su = {x ∈ Z : f̄ (x) ≥ u}.
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