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encourage discussion of work in progress. Any views expressed are those of
the author and not those of the U.S. Census Bureau.
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Overview

• This work considers a method to obtain proposal distributions in
rejection sampling (von Neumann, 1951).

• The vertical strip method (aka “Ahrens’ method”) provides one recipe
for a proposal distribution.

• We revisit vertical strips for targets which are weighted densities.
• Can draw from some distributions which might otherwise be

challenging. This includes several (univariate) examples from the
literature to be discussed here:

1. Polynomial-Normal distribution;
2. Conway-Maxwell Poisson distribution;
3. Posterior in a Gaussian Process with unknown variance parameter.

• There are many similarities here to the rejection sampling approach in
Raim (2023) to the direct sampler (Walker et al., 2011). The methods
in the present work are more straightforward.
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Target Distribution

• To generate variates from the target density

f (x) = f0(x)/ψ, ψ =
∫

Ω
f0(x)dν(x),

where
1. Ω is the support of f ,
2. ψ is a normalizing constant (may be intractable),
3. ν is a dominating measure.
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Rejection Sampling
• Let h(x) = h0(x)/a be a proposal distribution.
• Ideally, h should be

1. easy to evaluate,
2. easy to draw variates from,
3. its support of should include Ω, and
4. not too different from f .

• Find a “ratio adjustment factor” M such that

sup
x∈Ω

f0(x)
M · h0(x) ≤ 1.

Ideally M should be as small as possible.
• Standard rejection sampling algorithm:

1. Draw u from Uniform(0, 1).
2. Draw x from proposal h.
3. If u ≤ f0(x)/{M · h0(x)}, accept x as a draw from f ; otherwise return to

Step 1.
Repeat until desired number of draws are obtained, or bail out if there
are too many rejections.
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Acceptance Probability
• The probability of accepting a proposed x , with accompanying u, is

P
(

U ≤ f0(X )
Mh0(X )

)
= P

(
U ≤ ψf (X )

aMh(X )

)
= EX EU I

(
U ≤ ψf (X )

aMh(X )

∣∣∣∣ X
)

= EX

[
P

(
U ≤ ψf (X )

aMh(X )

∣∣∣∣ X
)]

= EX

[
ψf (X )

aMh(X )

]
=

∫
Ω

ψf (x)
aMh(x)h(x)dν(x)

= ψ

aM

∫
Ω

f (x)dν(x)

= ψ

aM .

• The number of draws until one acceptance occurs is a random variable
S ∼ Geometric(ψ/{aM}). Expected value of S is E(S) = aM/ψ.
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Distribution of an Accepted Draw
• For a measureable A ⊆ Ω, and X ∼ h, we have

P(X ∈ A | Accept) = P(X ∈ A | U ≤ f0(X )/{M · h0(X )})

=
P

(
X ∈ A,U ≤ f0(X)

M·h0(X)

)
P

(
U ≤ f0(X)

M·h0(X)

)
= aM

ψ
P

(
X ∈ A,U ≤ f0(X )

M · h0(X )

)
= aM

ψ

∫
I(x ∈ A)

[∫ f0(x)/{M·h0(x)}

0
du

]
h(x)dν(x)

= aM
ψ

∫
I(x ∈ A) f0(x)

Mh0(x)h(x)dν(x)

= aM
ψ

∫
I(x ∈ A) ψaM

f (x)
h(x)h(x)dν(x)

=
∫

A
f (x)dν(x).

• Therefore, an accepted draw x is from the target distribution.
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Formulating a Proposal

• The stock rejection sampling method does not include a recipe for h.

• With a poor choice of h, acceptances could be very rare so that the
algorithm may not be practical.

• It may be nontrivial to design an efficient customized proposal. A few
articles dedicated (at least partially) to this purpose are:

1. the von Mises Fisher distribution (Ulrich, 1984; Wood, 1994);
2. the Polynomial-Normal distribution (Evans and Swartz, 1998);
3. the Bessel distribution (Devroye, 2002); and
4. the Conway-Maxwell Poisson distribution (Chanialidis et al., 2018;

Benson and Friel, 2021).
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Formulating a Proposal

• The Adaptive Rejection Sampling (ARS) method automatically adapts
to the target using rejected draws, but requires that the target is
log-concave (Gilks and Wild, 1992).

• The Adaptive Rejection Metropolis Sampling (ARMS) drops the
log-concave restriction and uses a Metropolis step (Gilks et al., 1995).

1. However, it produces a chain of non-independent draws.
2. Proposal is not guaranteed to converge to the target with adaptations.

• The Independent Doubly Adaptive Rejection Metropolis Sampling
(IA2RMS) algorithm addresses the ARMS convergence issue and
reduces dependence (Martino et al., 2015).

• Another approach has been to relax log-concavity in ARS to something
less restrictive. E.g., Evans and Swartz (1998) permit some
transformation of the target to be concave.
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Formulating a Proposal

• The vertical strip method is a constructive way to make a proposal and
does not require log-concavity.

• This method is discussed in Devroye (1986, Chapters II and VIII) and
Martino et al. (2018, Chapter 3).

• Some recent works refer to this as “Ahrens method” based on Ahrens
(1993) and Ahrens (1995).

• Karawatzki (2006) discusses vertical strips with multivariate targets.
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Vertical Strip Method
• Suppose the support is a bounded interval Ω = (a, b].
• Let α0 ≤ · · · ≤ αN be knots where α0 ≡ a and αN ≡ b are fixed.
• The intervals Dj = (αj−1, αj ], j = 1, . . . ,N, partition the support.
• With f 0j = maxx∈Dj f0(x), we have

f0(x) ≤
N∑

j=1
I(x ∈ Dj) · f 0j

def= h0(x).

• With normalizing constant a =
∑N
ℓ=1 ξℓ and ξj = f 0j · (αj − αj−1), the

function h0(x) normalizes to a finite mixture of Uniforms:

h(x) =
N∑

j=1
πjgj(x), πj =

ξj∑N
ℓ=1 ξℓ

, gj(x) = I(x ∈ Dj)
αj − αj−1

.

• Take h0 as an envelope and h as a proposal for rejection sampling. We
can use M = supx∈Ω f0(x)/h0(x) ≡ 1.

• Hörmann (2002) studies several knot selection strategies, such as
“equally spaced” and “equal probabilities”.
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Weighted Target Distributions
• Consider the density:

f (x) = f0(x)/ψ, f0(x) = w(x)g(x), ψ =
∫

Ω
w(x)g(x)dν(x),

where
1. Ω is the support of f ,
2. w(x) ≥ 0 is the “weight function”,
3. g(x) is the “base distribution” density with Ω ⊆ supp g ,
4. ψ is a normalizing constant (may be intractable),
5. ν is a dominating measure.

• Many distributions encountered in practice have this form. E.g., in
Bayesian methodology.

• Idea: partition the support and relax (“majorize”) the weight function
on each region.

1. More flexible ✓
2. More involved.
3. More efficient?
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Weighted Vertical Strips
• Let w j(x) be a function that dominates w(x) on Dj ; i.e.,

w(x) ≤ w j(x), for all x ∈ Dj .

• We have

f0(x) = w(x)g(x) ≤
N∑

j=1
I(x ∈ Dj) · w j(x)g(x) def= h0(x).

• Let ξj = E[w j(T ) I(T ∈ Dj)] with T ∼ g .
• Normalizing function h0(x) with a =

∑N
ℓ=1 ξℓ yields

h(x) =
N∑

j=1
πjgj(x), πj =

ξj∑N
ℓ=1 ξℓ

, gj(x) = w j(x)g(x) · I(x ∈ Dj)
E[w j(T ) I(T ∈ Dj)]

.

• As before, h0 serves as an envelope for rejection sampling, h as a
proposal, and M = supx∈Ω f0(x)/h0(x) ≡ 1.
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Rejection Probability
• Probability of rejecting a proposed draw is 1 − ψ/a.
• This can be reduced by decomposing into more regions and/or taking

better choices of w j(x).
• When ψ is intractable, the following bound may be useful.
• Suppose w j(x) is another function such that w j(x) ≤ w(x) for all

x ∈ Dj , and let ξj = E[w j(T ) I(T ∈ Dj)].
• We have

1 − ψ

a = 1 − 1
a

N∑
j=1

∫
Dj

w(x)g(x)dν(x)

≤ 1 − 1
a

N∑
j=1

∫
Dj

w j(x)g(x)dν(x)

=
∑N

j=1(ξj − ξj)∑N
j=1 ξj

= 1 −

∑N
j=1 ξj∑N
j=1 ξj

.
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Choice of Weight Function
• There is some flexibility to define w(x) versus g(x), and to choose

w j(x).

• If q(x) is another positive function,

f (x) ∝ w(x)g(x) = w(x)q(x)︸ ︷︷ ︸
w̃(x)

1
q(x)g(x)︸ ︷︷ ︸

∝g̃(x)

.

• Some examples are given later where this kind of refactoring is useful.

• For w j(x), we would like:
1. w j(x) not too much larger than w(x);
2. easy to compute ξj = E[w j(T ) I(T ∈ Dj)];
3. easy to draw from gj(x) = w j (x)g(x)·I(x∈Dj )

E[w j (T ) I(T∈Dj )]
.

• Note that vertical strips is a special case of weighted vertical strips with
w(x) = f0(x) and g(x) is Uniform(Ω). (Assuming Ω is bounded).
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Choice of Weight Function
• We will focus on a specific choice for the remainder of the talk:

w j = max
x∈Dj

w(x), w j = min
x∈Dj

w(x).

• These may be computed analytically in some problems, but we will use
numerical optimization.

• Let ξj = w j P(T ∈ Dj) and ξj = w j P(T ∈ Dj) with T ∼ g .

• Normalizing h0(x) with a =
∑N
ℓ=1 ξℓ yields

h(x) =
N∑

j=1
πjgj(x), πj =

ξj∑N
ℓ=1 ξℓ

, gj(x) = g(x) I(x ∈ Dj)
P(T ∈ Dj)

.

• This h is often not difficult to work with in the univariate case. Suppose
G and G− are the CDF and quantile functions for g .

1. P(T ∈ Dj) = G(αj) − G(αj−1).
2. A draw x from gj is obtained as G−(

{G(αj) − G(αj−1)}u + G(αj−1)
)
,

with u drawn from Uniform(0, 1).
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Adapting the Proposal
• We decompose Ω into D1, . . . ,DN before sampling, with N prespecified.
• It is also possible to adapt using rejected draws, but we currently do not.
• With N0 current regions, split one of the regions.

1. Draw an index

j =


1, with probability ∝ ξ1 − ξ

1
,

...
N0, with probability ∝ ξN0 − ξ

N0
.

2. Bifrucate region j at its midpoint.
Repeat to get N regions or until rejection probability (or its upper
bound) is sufficiently small.

• Special handling is needed for intervals where:
1. one or both limits are infinite—to find a suitable bifrucation point; or
2. where support is discrete—so that each region contains at least one

support point.
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Example: Polynomial-Normal Distribution
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Polynomial-Normal Distribution

• The Polynomial-Normal distribution (Evans and Swartz, 1994, 1998)
has density

f (x) =
1√
2π exp{−x2/2} ·

∏m
ℓ=1(x − λℓ)(x − λ̄ℓ)∫ ∞

−∞
1√
2π exp{−s2/2}

[∏m
ℓ=1(s − λℓ)(s − λ̄ℓ)

]
ds
, x ∈ R,

based on a non-negative polynomial of degree 2m where (λℓ, λ̄ℓ) are
pairs of roots which are complex conjugates.

• To make this a concrete example, let m = 2 with λ1 = 1 + 0.5i and
λ2 = −3 + 0.5i .
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Rejection Sampler

f0(x) = 1√
2π

exp{−x2/2}︸ ︷︷ ︸
g(x)

·
m∏
ℓ=1

(x − λℓ)(x − λ̄ℓ)︸ ︷︷ ︸
w(x)

, x ∈ R
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Adapting the Proposal
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Proposal with N = 20

0
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Displayed value is ξj − ξj .
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Proposal with N = 21

0

20

40

60

80

−4 −2 0 2
x

w
(x

)

0.249.840.56 3.08 2.54 3.43

0

5

10

15

20

−2.5 0.0 2.5 5.0 7.5
x

f 0
(x

)

Displayed value is ξj − ξj .
Andrew M. Raim (CSRM) Rejection Sampling for Weighted Densities by Majorization Example: Polynomial-Normal Distribution 23/54



Proposal with N = 100
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Vertical Strip Proposal with N = 20
0.327.12 3.171.39 9.79
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Normalizing Constant

• The rejection sampler can provide an approximation of normalizing
constant ψ with a.

• The probability of rejecting one proposed draw, 1 − ψ/a ≡ a−ψ
a , can be

interpreted as a relative error.

• From the construction of a, we have a − ψ ≥ 0. Combining this with
the upper bound,

0 ≤ a − ψ

a ≤

∑N
j=1(ξj − ξj)∑N

j=1 ξj
.

• Can also show that

| P(Y ∈ A) − P(X ∈ A)| ≤ a − ψ

a ,

for X ∼ f , Y ∼ h, and any measureable A ⊆ Ω.
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Normalizing Constant for Polynomial-Normal
• Evans and Swartz (1994) note that the normalizing constant can be

computed with quadrature, or by expanding the polynomial and
calculating Normal moments.

• With quadrature,

ψ =
∫ ∞

−∞

1√
2π

e−x2/2

[ m∏
ℓ=1

(x − λℓ)(x − λ̄ℓ)
]

dx

= 1√
π

∫ ∞

−∞
e−z2

ϕ(z)dz

= 1√
π

m+1∑
ℓ=1

αℓϕ(xℓ),

where α1, . . . , αm+1 are Gauss-Hermite quadrature weights, x1, . . . , xm+1
are corresponding nodes, and ϕ(x) =

√
2 ·

∏m
ℓ=1(x − λℓ)(x − λ̄ℓ).

• We get exact equality because ϕ(x) is a polynomial of degree 2m.
• Quadrature weights and nodes can be obtained, for example, using the

statmod package in R (Smyth, 2005).
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Normalizing Constant for Polynomial-Normal
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• ψ = 13.0625.
• With N = 100 regions, a = 13.6448 and (a − ψ)/a = 0.043.
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Example: Conway-Maxwell Poisson
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Conway-Maxwell Poisson

• The Conway-Maxwell Poisson (CMP) distribution has become popular
for modeling count data which may exhibit over- and/or
underdispersion, relative to Poisson.

• The monograph by Sellers (2023) gives an overview of CMP and a
number of recent developments.

• The R package COMPoissonReg (Raim and Sellers, 2022) implements
basic CMP distribution functions and regression.
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CMP Distribution

• A random variable X with distribution CMP(λ, ν) has probability mass
function (pmf)

f (x) = λx

(x !)νZ (λ, ν) , x = 0, 1, 2, . . . , Z (λ, ν) =
∞∑

x=0

λx

(x !)ν

where λ ≥ 0 and ν ≥ 0.

• The CMP(λ, ν) family includes some cases of interest.
1. When ν = 1, it corresponds to Poisson(λ). Here variance and mean are

both λ.
2. When ν < 1, it becomes overdispersed so that the variance is larger than

the mean. At the extreme ν = 0, it corresponds to Geometric(1 − λ).
3. When ν > 1, it becomes underdispersed so that the variance is smaller

than the mean. As ν → ∞, it becomes Bernoulli(λ/(1 + λ)).
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Sampling from CMP

• Generating variates from CMP is non-trivial because of Z (λ, ν).

• It does not have a closed form and its magnitude can vary wildly with λ
and ν. The mass of the distribution can shift accordingly.

• For example, let λ = 2.
1. If ν = 1, then Z(λ, ν) = e2 and E(X) = 2.
2. If ν = 0.05, Z(λ, ν) ≈ exp(52,437.76) and E(X) = 1,048,585.
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Sampling from CMP

• Motivating works by Chanialidis et al. (2018) and Benson and Friel
(2021) use rejection sampling.

1. Bayesian analysis of CMP parameters.
2. Exchange algorithm: Metropolis sampler with data augmentation to

avoid computing intractable normalizing Z(λ, ν) constant.
3. Requires method to draw exactly from CMP.
4. They develop custom rejection sampling algorithms.
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Sampling from CMP
• COMPoissonReg works by either truncating or approximating Z (λ, ν).
• If λ−1/ν is small, use an approximation (Shmueli et al., 2005)

Z (λ, ν) = exp(νλ1/ν)
λ(ν−1)/2ν(2π)(ν−1)/2ν1/2

{
1 + O(λ−1/ν)

}
.

• Otherwise, truncate the series Z (λ, ν) to a finite sum
Z (m)(λ, ν) =

∑m
r=0

λr

(r !)ν .
• The remainder

Z (λ, ν) − Z (m)(λ, ν) =
∞∑

r=m+1

λr

(r !)ν

can be bounded above by a convergent geometric series; m can then be
chosen large enough to achieve a desired tolerance.

• The approximated Z (λ, ν) is used to do a brute force calculation of the
quantile function qcmp(p, lambda, nu).

• The function rcmp generates a variate using qcmp(u, lambda, nu)
with u generated from Uniform(0, 1).
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Rejection Sampler: Underdispersion Case
• For the case ν ≥ 1, let g be the pmf of Geometric(1/{1 + λ}) so that

f (x) ∝ λx

(x !)ν =
(

λ

1 + λ

)x 1
1 + λ︸ ︷︷ ︸

g(x)

(1 + λ)x+1 λx

(x !)ν︸ ︷︷ ︸
w(x)

.

• Let λ = 10 and ν = 1.2.

• Sampler with N = 21 regions rejected 5 proposed draws to obtain
100,000 variates (rejection rate 0.005%).
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Rejection Sampler: Overdispersion Case
• For ν < 1, Geometric(1/{1 + λ}) may be an inefficient base because its

mass can be practically disjoint from CMP(λ, ν).

• Here let µ = λ1/ν and

f (x) ∝ µνx

(x !)ν =
(

µ

1 + µ

)x 1
1 + µ︸ ︷︷ ︸

g(x)

(1 + µ)x+1µ
x(ν−1)

(x !)ν︸ ︷︷ ︸
w(x)

.

• For λ = 1.5 and ν = 0.05.

• Sampler with N = 101 regions rejected 2,922 proposed draws to obtain
100,000 variates (rejection rate 2.84%).
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Acceptance Study
A brief study of acceptance % with R = 100,000 and N = 10:

• λ ∈ {0.25, 0.5, 0.75, 1, 1.25, 2, 5, 10},
• ν ∈ {0.01, 0.05, 0.5, 1, 1.5, 5, 10},
• where λ1/ν ≤ 50, 000.
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Acceptance Study
A brief study of acceptance % with R = 100,000 and N = 50:

• λ ∈ {0.25, 0.5, 0.75, 1, 1.25, 2, 5, 10},
• ν ∈ {0.01, 0.05, 0.5, 1, 1.5, 5, 10},
• where λ1/ν ≤ 50, 000.
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Example: Gaussian Process Regression
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Gaussian Process Regression
• Suppose µ(·) : Rd → R is a function whose form may be unknown.

• Data are (x i , yi), i = 1, . . . , n, where yi is a noisy observation of µ(x i).

• Consider the GP model
yi = µ(x i) + ϵi , ϵi ∼ N(0, σ2), i = 1, . . . , n,
µ ∼ GP(0, k(·, ·)), σ2 ∼ Gamma(aσ, bσ),

shape aσ, rate bσ, and covariance kernel k(x, x ′) = exp{− 1
2 ∥x − x ′∥2}.

• Likelihood portion of the model in vector form is
y = µ(X) + ϵ, ϵ ∼ N(0, σ2I), µ(X) ∼ N

(
0, k(X ,X)

)
,

where

y =

y1
...

yn

 , µ(X) =

µ(x1)
...

µ(xn)

 , k(X ,X) =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 .
• Using the proposed rejection sampler, we can draw exactly from the

posterior distribution [σ2 | y ] without MCMC.
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Rejection Sampler
• Use transformation to avoid repeating matrix operations in the sampler.
• Let UΛU⊤ be the spectral decomposition of k(X ,X), with

Λ = Diag(λ1, . . . , λn), so that

Var(y | σ2) = σ2I + k(X ,X)
= U[σ2I + Λ]U⊤.

• Transform the marginal likelihood of y ∼ N(0, σ2I + k(X ,X)) to
z = U⊤y where zi

ind∼ N(0, σ2 + λi).
• Let weight function be the unnormalized posterior with respect to z:

log w(σ2) = −1
2

n∑
i=1

log(σ2 + λi) − 1
2

n∑
i=1

z2
i

σ2 + λi

+ (aσ − 1) log σ2 − bσσ2.

• Take base distribution g as the density of Uniform(0, 1000).
• A similar of formulation of the rejection sampler can be used with other

priors on σ2 and other covariance kernels (with fixed hyperparameters).



Posterior Predictive Distribution
• Let X0 be (potentially new) inputs:

X0 =

 x⊤
01
...

x⊤
0n0

 , so that µ(X0) =

 µ(x01)
...

µ(x0n0)

 .
• To sample from the posterior predictive distribution [µ(X0) | y ].

1. Draw σ2(r), r = 1, . . . ,R, from the posterior.
2. Draw µ(X0) from [µ(X0) | σ2, y ] for each σ2 = σ2(r).

• The distribution [µ(X0) | σ2, y ] can be obtained as N(µ0,Σ0), where

µ0 = k(X0,X)[k(X ,X) + σ2I]−1y ,
Σ0 = k(X0,X0) − k(X0,X)[k(X ,X) + σ2I]−1k(X ,X0).

• This is be obtained from

[y , µ(X0) | σ2] ∼ N
([

0
0

]
,

[
σ2I + k(X ,X) k(X ,X0)

k(X0,X) k(X0,X0)

])
.
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Example
• To learn about the sinc function µ(x) = sin(πx)/{πx}.
• Observe n = 25 outcomes yi = µ(xi) + ϵi with ϵi

iid∼ N(0, σ2), with
1. σ2 = 0.12,
2. xi on an evenly spaced grid in [−6, 6],

• Choose hyperparameters aσ = 2 and bσ = 1/2.
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Adapting the Proposal
• With N = 101 regions, 1,502 proposed draws were rejected to obtain

R = 50,000 (rejection rate 2.92%)
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Posterior Draws
Empirical distribution of R draws from rejection sampler (solid blue) to R
draws computed via Stan (Carpenter et al., 2017) with No U-Turn sampler
(dashed black).
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Posterior Predictive Results
Posterior predictive mean of µ(x) (blue curve) for x on a fine grid on [−6, 6],
and associated 95% pointwise interval from 0.025 and 0.975 quantiles (blue
shaded area).
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Spatial Linear Regression

• The spatial linear regression model presented in Chapter 6 of Banerjee
et al. (2015) is an application of the GP.

• Suppose x i are locations on a spatial domain with fixed covariate
s(x i) ∈ Rm and observation yi , i = 1, . . . , n, and

yi = s(x i)⊤β + ζ(x i) + ϵi , ϵi
iid∼ N(0, σ2),

ζ ∼ GP(0, k(·, ·)), β ∼ N(0, σ2
βI), σ2 ∼ Gamma(aσ, bσ).

• With kernel k(·, ·) completely specified, we can draw from the exact
posterior using the proposed rejection sampler.

• The R package spBayes (Finley et al., 2007) considers a fully conjugate
variation of this model with σ2 fixed. Also, full Bayesian treatments of
more general variants with MCMC via Metropolis-Hastings.
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Spatial Linear Regression

• Marginally, [y | σ2] ∼ N(0, σ2I + σ2
βSS⊤ + k(X ,X)), where S is a

matrix with s(x i) as the ith row.

• Let UΛU⊤ be the spectral decomposition of σ2
βSS⊤ + k(X ,X), and

consider the posterior with respect to data z = U⊤y where
zi

iid∼ N(0, σ2 + λi) as before.

• Draws of β can be recovered from [β | σ2, y ] ∝ [y | β, σ2] · [β] using
conjugacy of N(y | Sβ, σ2I + k(X ,X)) and N(β | 0, σ2

βI).

• Draws of ζ(X0) from posterior predictive distribution [ζ(X0) | y ] may
be obtained using [ζ(X0) | β, σ2, y ] ≡ N(µ0,Σ0),

µ0 = k(X0,X)[k(X ,X) + σ2I]−1(y − Sβ),
Σ0 = k(X0,X0) − k(X0,X)[k(X ,X) + σ2I]−1k(X ,X0).
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Conclusions

• We have revisited the vertical strip method of rejection sampling.
• Some additional flexibility is possible for weighted distributions.
• We presented several examples from the literature.
• Such rejection samplers may be useful within Gibbs samplers for

multivariate targets.
1. An example is in Bayesian modeling of noisy tabulations for disclosure

avoidance.
2. Distribution of noise mechanism and regression model may not be

conjugate.
3. Rejection sampling can be used as a step within a Gibbs sampler (Raim,

2021; Irimata et al., 2022).

• Several applications of the rejection sampler involving (joint)
multivariate targets are currently being considered.

• Our adaptation method is fast and easy to compute, but improvements
in efficiency (reduced rejection rates for smaller N) are possible.
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Thank you!
andrew.raim@census.gov
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