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Overview

• Conway-Maxwell-Poisson (CMP) is a flexible count distribution that can
handle both under- and overdispersion, relative to Poisson.

• Excess zeroes are frequently encountered in count datasets.

• If both a zero-generating process and a count distribution are
responsible for the data, the count distribution may be either under- or
overdispersed (Sellers and Shmueli, 2013).

• This motivates our study of the Zero-Inflated CMP (ZICMP)
distribution and associated regression models.

• We will introduce ZICMP, study properties of the maximum likelihood
estimator (MLE) and a test for equidispersion, and apply the model to a
real dataset.
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Literature Review

• Zero-Inflated Poisson (ZIP) is a popular regression model for count data
with excess zeroes (Lambert, 1992).

• ZIP regression has been used in manufacturing (Lambert, 1992),
horticulture (Hall, 2000), zoology (Zipkin et al., 2014), and criminology
(Famoye and Singh, 2006).

• Zero-Inflated Negative Binomial (ZINB) regression is often used under
both overdispersion and excess zeroes (Hilbe, 2011). A special case of
the ZINB distribution is the Zero-Inflated Geometric (ZIG) distribution.

• These and other zero-inflated regression models are available in the
VGAM R package.

• CMP is a flexible, two-parameter distribution for count data expressing
under- or overdispersion (Conway and Maxwell, 1962).

• A ZICMP regression model addresses the excess zeroes and provides
flexibility in modeling dispersion.
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ZICMP Model

• Recall the CMP distribution. Write Y0 ∼ CMP(λ, ν) for Y0 with density

f (y | θ) =
λy

(y !)νZ (λ, ν)
, y = 0, 1, . . . ,

where Z (λ, ν) =
∑∞

j=0
λj

(j!)ν and θ = (λ, ν).

• Suppose S ∼ Ber(p) and Y0 ∼ CMP(λ, ν) independently, and let

Y = S · 0 + (1− S)Y0.

We will write Y ∼ ZICMP(λ, ν, p).

• Let ∆ = I (Y = 1) and θ = (λ, ν, p); density of Y can be written as

f (y | θ) =

[
p {Z (λ, ν)− 1}+ 1

Z (λ, ν)

]∆ [
(1− p)λy

(y !)νZ (λ, ν)

]1−∆

.
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ZICMP Model

• Moments of ZICMP can be computed from CMP using

E(Y r ) = E[(1− S)r ] E(Y r
0 ) = (1− p) E(Y r

0 ),

E(Y r+1
0 ) =

{
λ[E(Y0 + 1)]1−ν r = 0,

λ ∂
∂λ E(Y r

0 ) + E(Y0) E(Y r
0 ) r > 0.

• Moment generating function of ZICMP can be computed from CMP
using

E(etY ) = ES EY0|S [et(1−S)Y0 ]

= ES

[
Z (λet(1−S), ν)

Z (λ, ν)

]
= p + (1− p)

Z (λet , ν)

Z (λ, ν)
.
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ZICMP Special Cases

• If ν = 1, pdf of ZICMP(λ, ν, p) becomes Zero-Inflated Poisson,

Y ∼

{
0 w.p. p,

Poisson(λ) w.p. 1− p.

• If ν = 0, pdf of ZICMP(λ, ν, p) becomes Zero-Inflated Geometric,

Y ∼

{
0 w.p. p,

Geometric(1− λ) w.p. 1− p.

• As ν →∞, pdf of ZICMP(λ, ν, p) becomes “Zero-Inflated Bernoulli”,

Y ∼

{
0 w.p. p,

Ber( λ
1+λ ) w.p. 1− p,

which is actually just Ber
(

(1−p)λ
1+λ

)
. However, λ and p are not

identifiable.
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ZICMP Regression Model

• We will consider an indepedent sample Yi ∼ ZICMP(λi , ν, pi ),
i = 1, . . . , n, where

log(λi ) = xTi β and logit(pi ) ≡ log
pi

1− pi
= wT

i ζ.

• We could further model ν = (ν1, . . . , νn) through a regression if desired,
e.g. with log(νi ) = sTi γ.

• The log-likelihood for θ = (β, ν, ζ) is

logL(θ) =
n∑

i=1

{
∆i log

[
piZ (λi , ν) + (1− pi )

]
− logZ (λi , ν)

+ (1−∆i )
[

log(1− pi ) + yi log(λi )− ν log(yi !)
]}
.
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ZICMP Score Function

• First derivatives of the log-density `i (θ) = log f (yi | θ) for θ = (λ, ν, p)
are

∂`i (θ)

∂λ
= − 1− p

zp + (1− p)

∂ log z

∂λ
∆ +

y

λ
(1−∆)− ∂ log z

∂λ
(1−∆),

∂`i (θ)

∂ν
= − 1− p

zp + (1− p)

∂ log z

∂ν
∆ + (1−∆) log Γ(y + 1)− ∂ log z

∂ν
(1−∆),

∂`i (θ)

∂p
=

z − 1

zp + (1− p)
∆− 1

1− p
(1−∆),

using the shorthand z = Z (λ, ν).

• Using these expressions, we obtain the score function

∂

∂θ
logL(θ) =

n∑
i=1

∂`i (θ)

∂θ
.
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ZICMP Information Matrix
The Fisher information matrix (FIM) for ZICMP with θ = (λ, ν, p) has form

Iθ =

Iλλ Iλν Iλp
Iλν Iνν Iνp
Iλp Iνp Ipp

 .

Denoting µ = E (Y ) = (1− p)λ∂ log z
∂λ , FIM components are

Iλλ = (1− p)
∂2 log z

∂λ2
− p(1− p)

zp + (1− p)

(
∂ log z

∂λ

)2

+
µ

λ2
,

Iνν = (1− p)
∂2 log z

∂ν2
− p(1− p)

zp + (1− p)

(
∂ log z

∂ν

)2

,

Ipp =
1

z

(z − 1)2

zp + (1− p)
+

1

z

z − 1

1− p
,

Iλν = (1− p)
∂2 log z

∂ν∂λ
− p(1− p)

zp + (1− p)

∂ log z

∂ν

∂ log z

∂λ
,

Iλp = − 1

zp + (1− p)

∂ log z

∂λ
, Iνp = − 1

zp + (1− p)

∂ log z

∂ν
.

The FIM becomes singular under non-identifiability (Rothenberg, 1971).



Computational Details

• Normalizing constant z = Z (λ, ν) and derivatives truncated, e.g.

Z (λ, ν) ≈
J∑

j=0

λj

(j!)ν
,

∂ log z

∂λ
≈ 1

z

J∑
j=0

jλj

(j!)ν
,

∂ log z

∂ν
≈ −1

z

J∑
j=0

log(j!)λj

(j!)ν
.

We take J = 100.

• We use the R function nlminb to maximize the likelihood subject to
constraints. For the ZICMP regression model, we maximize logL(θ)
subject to ν > 0.

• Standard errors and confidence intervals for θ̂ = (β̂, ν̂, ζ̂) are computed
using approximate normality θ̂ ∼ N(θ, I−1

θ ). We can estimate Iθ by Iθ̂.
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Large Sample Properties of the MLE

• We assess large sample properties of the MLE θ̂ = (λ̂, ν̂, p̂) through a
simulation study.

• Draw an iid sample from ZICMP(λ, ν, p) where λ = 2, p = 0.1,
ν ∈ {0.25, 0.5, 0.75, 1, 2, 5, 10, 20, 30}, and n ∈ {100, 200, 500, 1000}.

• For each combination of parameters (λ, ν, p) and each n, R = 1000
samples of size n are drawn, and the MLE θ̂(r) is computed on each
sample, r = 1, . . . ,R.

• Wald statistics W (r) = (θ̂(r) − θ)TIθ(θ̂(r) − θ) are then obtained for
r = 1, . . . ,R.

• If θ̂ follows the anticipated large sample N(θ, I−1
θ ) distribution, the

empirical CDF of W (1), . . . ,W (R) should approach the CDF of χ2
3 as n

becomes large.

• Recall that ZICMP(λ, ν, p) approaches a non-identifiable Zero-Inflated
Bernoulli distribution with a singular FIM, which is likely to influence
the W statistic.
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Large Sample Properties of the MLE
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(a) ν = 0.25
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(b) ν = 0.5
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(c) ν = 0.75
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(d) ν = 1
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(e) ν = 2
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Large Sample Properties of the MLE
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(a) ν = 4
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(b) ν = 5
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(c) ν = 7
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(d) ν = 10
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(e) ν = 20
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Test for Equidispersion

• Consider a level α test of H0 : ν = 1 vs H1 : ν 6= 1. Under H0, ZICMP
is restricted to ZIP.

• Let θ̂ = (β̂, ν̂, ζ̂) be the unrestricted MLE, and let θ̂0 = (β̂0, ζ̂0) be the
MLE under the ZIP distribution.

• The likelihood-ratio test (LRT) statistic is

− 2 log Λ = 2 logL(β̂, ν̂, ζ̂)− 2 logL(β̂0, ν = 1, ζ̂0),

where Λ =
L(β̂0, ν = 1, ζ̂0)

L(β̂, ν̂, ζ̂)
.

• Test procedure using the large sample distribution of the LRT
−2 log Λ ∼ χ2

1 is

Reject H0 if −2 log Λ ≥ χ2
1(1− α),

where χ2
1(ξ) is the ξ quantile of the χ2

1 distribution.
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Empirical Power for LRT
• Draw 1000 iid samples of size n ∈ {50, 100, 200} from ZICMP(λ, ν, p).

• Compute proportion of rejections for each setting.

• Choose α = 0.1, λ = 2, p ∈ {0.01, 0.1}, and let ν vary.
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Model Flexibility Study

• We illustrate the flexibility of ZICMP compared to several other count
distributions.

• We randomly generate five datasets selected distributions; each contains
900 randomly drawn counts and 100 zeroes.

• Fit each of the competing models for each dataset.

• Compare models using AIC and a goodness-of-fit (GOF) statistic.
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Model Flexibility Study
GOF Statistic

• Let I1, . . . , IK be a partition of [0,∞) and let density g(· | θ) be a
proposed model for the data.

• Let O` be the observed count on I` and E`,θ be the corresponding
expected count under g(· | θ), for ` = 1, . . . ,K .

• To test the null hypothesis that the data are a random sample from
g(· | θ), a GOF statistic is

GOF(θ) =
K∑
`=1

[O` − E`,θ]2

E`,θ
,

• When θ ∈ Rq is estimated by MLE, GOF(θ̂) follows a distribution
between χ2

K−1−q and χ2
K under the null hypothesis (Sutradhar et al.,

2008).

• Where possible, we merged the possible counts {0, 1, 2, . . .} into K
categories I1, . . . , IK so that each E`,θ ≥ 3.
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Sim Dist’n ZIP ZIG ZINB ZICMP

ZIG(p∗ = 0.3) λ̂∗: 3.272 (2.403) p̂∗: 0.294 (0.312) λ̂: 2.160 (0.198) λ̂: 0.706 (1.407)
p̂: 0.349 (0.507) p̂: 0.113 (0.790) p̂: 0.014 (0.080) p̂: 0.113 (1.130)

κ̂: 1.359 (0.265) ν̂: 0.00 (1.108)
AIC 4434.942 3905.277 3904.460 3907.277
GOF 370.63, 6, 0.001 8.86, 11, 0.635 8.63, 10, 0.568 8.86, 10, 0.546

ZIP(λ = 3) λ̂∗: 3.054 (1.984) p̂∗: 0.264 (0.264) λ̂: 3.044 (0.066) λ̂: 2.930 (10.034)
p̂: 0.086 (0.363) p̂: 0.000 (0.698) p̂: 0.083 (0.013) p̂: 0.083 (0.430)

κ̂: 0.012 (0.019) ν̂: 0.970 (2.411)
AIC 3984.716 4379.247 3986.257 3986.564
GOF 8.87, 6, 0.181 392.34, 12, 0.001 8.88, 6, 0.180 8.99, 6, 0.174

“ZIB(π = 0.7)” λ̂∗: 0.618 (1.493) p̂∗: 0.618 (0.618) λ̂: 0.618 (0.025) λ̂: 1.638 (NA)
= Ber(π = 0.63) p̂: 0.000 (2.053) p̂: 0.000 (2.058) p̂: 0.000 (0.000) p̂: 0.005 (NA)

κ̂: 0.000 (0.000) ν̂: 33.325 (NA)
AIC 1834.846 2155.979 1836.846 1336.070
GOF 417.22, 2, 0.001 853.60, 3, 0.001 417.24, 1, 0.001 0.001, 1, 0.999

ZICMP λ̂∗: 1.505 (1.624) p̂∗: 0.399 (0.399) λ̂: 1.505 (0.039) λ̂: 6.513 (46.851)
(λ = 8, ν = 3) p̂: 0.000 (0.707) p̂: 0.0000 (1.052) p̂: 0.000 (0.001) p̂: 0.090 (0.585)

κ̂: 0.000 (0.001) ν̂: 2.721 (7.740)
AIC 2824.286 3374.160 2826.308 2701.204
GOF 104.02, 4, 0.001 624.68, 8, 0.001 104.05, 3, 0.001 6.57, 1, 0.010

ZICMP λ̂∗: 18.045 (4.483) p̂∗: 0.054 (0.059) λ̂: 18.041 (0.279) λ̂: 1.987 (2.512)
(λ = 2, ν = 0.25) p̂: 0.102 (0.303) p̂: 0.050 (0.325) p̂: 0.102 (0.010) p̂: 0.101 (0.303)

κ̂: 0.160 (0.010) ν̂: 0.245 (0.428)
AIC 8185.519 7597.370 6931.829 6924.219
GOF 2902.28, 21, 0.001 655.83, 45, 0.001 55.36, 36, 0.021 46.43, 34, 0.076

* Each entry in the GOF row lists three values: goodness-of-fit test statistic, degrees of freedom
K − 1− q, and resulting p-value.

** Very small values have been truncated to 0.001.
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Analysis of Couples Data

• Loeys et al. (2012) investigated unwanted pursuit behaviors in
separations between n = 387 couples.

• Outcome yi is count of unwanted pursuit behaviors; 246 of 387 cases
have yi = 0.

• Covariates are education level xi1 and level of anxious attachment xi2

• The dataset is overdispersed; the mean of y1, . . . , yn is 2.284 while the
variance is 23.302.

• We compare the fit of several count regression models to this data.
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Analysis of Couples Data

P NB CMP ZIP ZINB ZICMP ZIG

--- Count component ---

(int) 0.817 0.855 −0.385 1.921 1.723 −0.160 1.770
(0.044) (0.155) (0.055) (0.044) (0.150) (0.077) (0.122)

educ −0.216 -0.353 -0.056 −0.350 −0.490 −0.068 −0.476
(0.070) (0.250) (0.038) (0.071) (0.206) (0.034) (0.191)

anx 0.422 0.486 0.117 0.133 0.205 0.023 0.199

(0.033) (0.122) (0.021) (0.034) (0.108) (0.015) (0.100)

--- Zero component ---

(int) 0.673 0.340 0.418 0.422
(0.142) (0.210) (0.167) (0.159)

educ -0.232 -0.459 -0.388 -0.416

(0.222) (0.297) (0.268) (0.271)

anx −0.483 −0.520 −0.524 −0.503
(0.111) (0.147) (0.133) (0.135)

θ̂ 0.194 0.821

(0.022) (0.226)

ν̂ 0.000 0.000

(0.033) (0.031)

# params 3 4 4 6 7 7 6

log L -1388.20 -638.96 -756.92 -802.45 -626.14 -627.17 -626.42

AIC 2782.4 1285.9 1521.84 1616.9 1266.3 1268.3 1264.8

Red indicates significance at 0.05 level.
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Analysis of Couples Data
Randomized Quantile Residuals (Dunn and Smyth, 1996)
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(a) Poisson
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(b) ZINB
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(c) ZICMP
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(d) Poisson
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(e) ZINB
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(f) ZICMP



Conclusions and Future Work

• ZICMP regression was developed to model count data containing excess
zeroes and either under- or overdispersion.

• For more details, see Sellers and Raim (2016) in CSDA.

• For very underdispersed datasets, use CMP regression to avoid
identifiability issues.

• R code for ZICMP regression is available on request.

• Choo-Wosoba et al. (2016) extend ZICMP to handle longitudinal data
with clustering.
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