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Outline of Talk

1. Introduction to the MAF Error Model project.

2. Discussion of zero-inflated count modeling in (Young and
Johnson, Submitted).

3. Some results using an updated database.
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MAF Background

• The Master Address File (MAF) is an inventory of all known
living quarters in the U.S. and Puerto Rico.

• A MAF extract (MAFX) is used as a frame to support several
household surveys (e.g. ACS, decennial census, and ongoing
demographic surveys).

• The MAF is regularly updated by operations related to the
decennial census: e.g. canvassing, Delivery Sequence File (DSF)
from U.S. Postal Service

• Two types of coverage errors:
1. Undercoverage: addresses missing from the MAF
2. Overcoverage: addresses which should be removed from the

MAF

• Adds fix undercoverage and deletes fix overcoverage
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MAF Error Model (MEM) Project

• Develop statistical models for the MAF that will produce
estimates of coverage errors at the census block level.

• Help characterize the quality of a particular MAFX and lend
insight to frame improvement.

I Surveys and Census operations using a MAFX could quickly
estimate coverage errors at different levels of geography with the
current MEM.

• Toward the goal of Targeted Address Canvassing: select an
optimal set of blocks to canvass in 2019 to support 2020 Census.
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Data for MEM
Housing Units (HUs) from 2010 Census Address Canvassing
(AdCan).

Blocks with > 0 HUs.

Dependent variables: Counts from AdCan operation:
• Adds
• Deletes

Independent variables: Candidate predictors, such as:
• American indian/hawaiian homeland indicator
• Urban/rural area
• # small, # large multi-units
• Presence of LUCA (Local Update of Census Address)
• MAF source variables
• DSF coverage variables

HU-level counts are aggregated up to block level.
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Distributions of Adds and Deletes
Updated Database
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Figure: Distribution of blocks with 20 or fewer adds (left) and deletes (right).
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Young and Johnson Methodology
ZI Regression Models for Counts

Investigated two zero-inflated (ZI) regression models for counts.
• Zero-inflated Poisson (ZIP) regression.
• Zero-inflated negative binomial (ZINB) regression.

Regression: To explain variability (distribution) of the observed #
of adds/deletes through contributions of predictor variables.

Count model: Responses are (non-negative) counts.
• Ordinary least squares (OLS) regression is not quite appropriate.
• More granular at block level than logistic regression.

Zero-inflation: More zero-counts than expected under a traditional
count regression model (e.g. Poisson or negative binomial).
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Young and Johnson Methodology
Initial Variable Screening

Omitted some candidate predictor variables because they had:
• Sparse counts;
• Were collected after AdCan; or
• Caused numerical issues when included.

Looked at each non-categorical predictor variables correlation with
the number of adds and deletes.

• Variables omitted if correlation coefficient < 0.05.

Resulted in 51 candidate variables for the “adds” model and 58
candidate variables for the “deletes” model.
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Young and Johnson Methodology
Collinearity

• Collinearity (i.e. high correlation) between predictors can inflate
standard errors, impact numerical accuracy, and cause other
issues.

• Assessed collinearity at varying thresholds of the variance
inflation factor (VIF).

• Systematically omitted variables from the model at various
thresholds of the VIF (i.e. 100, 25, and 10) until all remaining
variables had a VIF < 10.
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Young and Johnson Methodology
Variable Selection

• Using all remaining candidate predictors, did a limited variable
selection investigation to identify the “best” subset of predictors.

• Classified predictors into 6 categories.

• Used the Bayesian Information Criterion (BIC) to assess
inclusion/exclusion of each set of predictors.
(Smaller BIC =⇒ “better” fit).
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Young and Johnson Methodology
Model Selection and Prediction Error

Using Vuong’s test (Vuong, 1989), we found:
• Negative binomial fits better than Poisson.
• ZI models fits better than non-ZI models.

Prediction errors:
• Compared observed counts with counts predicted from ZI
models.

• Calculated percentage of correct and incorrect predictions.
• Used 5-Fold cross-validation (CV) to check for overfitting.
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Young and Johnson Methodology
Some Variables Appearing in Both Models

• Block-Level Categorical Variables: urban/rural area; American
Indian/Hawaiian Homeland

• Census 2000 Variables: enumeration status - not in Census;
enumeration status - respondent return

• Pre-AdCan Collection Block Variables: Basic Street
Addresses that are small multi-units

• Pre-AdCan Delivery Point Variables: business curbline;
residential curbline

• AdCan Filter Variables: Flag percentage of records valid for
AdCan delivery

• All Other Variables: percentage of seasonal records; percentage
of vacant records

For ZINB: Out of 307 candidate predictors, 39 used in “adds” model
and 38 used in “deletes” model.
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Young and Johnson Methodology
Informing Address Canvassing

• Good predictions can identify regions with many potential adds
and/or deletes.

• Using the models, we can estimate coverage errors vs. canvassing
effort (e.g. % of blocks canvassed).

• Receiver operating characteristic (ROC) curve:
I True Positive Rate (TPR): # blocks marked for canvassing that need it

# blocks that need canvassing .
I False Positive Rate (FPR): # blocks marked for canvassing that don’t need it

# blocks that don’t need canvassing .

• A limitation is the version of the data used to fit models. The
further removed we are from the 2010 AdCan operation, the
more difficult it becomes to accurately quantify block-level
adds/deletes.
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Results from Updated Database
Refitting the Adds Model

• Data contains 6,585,686 blocks with 144,617,812 HUs.
• 873 available predictors: One binary, one categorical (4 levels),
rest are proportions.

• Removed 155 proportions which were constant over all blocks.
• Kept 167 of proportion variables, having |corr| > 0.01 to adds.
• After VIF analysis, kept 55 variables.
• Dropped variables with low significance (p-value > 0.01) in ZINB
and ZIP models.

• Obtained models:
I ZINB: 52 variables in NegBin regression, 1 (categorical) in ZI

regression.
I ZIP: 53 variables in Poisson regression, 2 (categorical + binary) in

ZI regression.
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Results from Updated Database
Quality of Canvassing using Predictions and ROC
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Results from Updated Database
Coverage Estimates

• Consider the following measure of MAF Undercoverage error

Undercoverage = Total # Adds
Total # HUs ,

Actual ZINB ZIP
Undercoverage 0.066 0.085 0.054

• These quantities are simply for our assessment and are not based
on any previous Census methodology, such as that in (Mule,
2008).

• “Actual” is computed from the database. It is not referencing
published numbers and is used solely for comparison with models.
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Some Next Steps

Investigate new variables being added to database.
• Title 26 data, AdRecs, . . .

Want flexibility to update models with new data sources.
• Spatial data, economic indicators, . . .

Develop an approach for determining adds in zero-blocks.
• E.g. use distance measures between blocks with larger number
of adds and the zero-blocks

Bivariate regression models for adds and deletes
• Diagonal inflation?
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