A Statistical Comparison of Call Volume Uniformity Due to Mailing Strategy

Andrew M. Raim

Center for Statistical Research and Methodology U.S. Census Bureau andrew.raim@census.gov

> 2018 Joint Statistical Meetings Vancouver. CA

Joint work with **Elizabeth Nichols** (CES, U.S. Census Bureau) and **Thomas Mathew** (CSRM, U.S. Census Bureau)

Introduction

- The Census Bureau will send mail to each household in the U.S. to request participation in the 2020 Census.
- Responses will be encouraged on a large scale through the internet and by phone (U.S. Census Bureau, 2017).
- Telephone helplines will be highlighted in mailings, both to assist with internet responses and to serve as a mode of response itself.
- Ideally, the Census Bureau would prefer uniform volume of calls throughout each week of the census. This would require fewer helpline staff to cover peak times, and a more constant workload for hired staff.

A. Raim (Census Bureau) Call Uniformity Introduction

Introduction

Scheduling Mailings

- The Census Bureau determines the schedule of mailing materials, which influences when call volumes tend to occur (Chesnut, 2003; Zajac, 2012).
- Nichols et al. (2018) notes some general patterns in call volumes.
 - 1. Peaks occur on the expected mail delivery dates.
 - 2. Volumes are highest on Mondays and Tuesdays, decline through the rest of the week, and are lowest weekends.
 - 3. Volumes diminish after Census Day.
 - 4. Volumes diminish after all mailings have occurred.
- The Census Bureau is considering plans to split recipients into two or more groups and stagger mailings to arrive on different days of the week.

Introduction

Datasets

- We compare uniformity among call volumes recorded in three census experiments. These operations are referred to as National Census Bureau Surveys (NCBS's) in mailing materials.
- An unstaggered mailing strategy was used in the 2016 September NCBS (Eggleston and Coombs, 2017) and 2016 June NCBS (Coombs, 2017).
- A staggered mailing schedule was used in the 2017 March NCBS
 (Nichols et al., 2018). Here, study participants were randomly assigned into either a Monday Mailout group or a Thursday Mailout group.
- Live agents were not present to answer the helpline and callers received a prerecorded message.
- Caller identities were not recorded, so we cannot distinguish whether multiple calls were made by the same caller.

A. Raim (Census Bureau) Call Uniformity Introduction 4/2

Mailing Schedules

(a) The 2017 March NCBS.

	Monday Mailout	Thursday Mailout
1	Mon 3/06/2017	Thu 3/09/2017
2	Thu 3/09/2017	Mon 3/13/2017
3	Mon 3/20/2017	Thu 3/23/2017
4	Mon 3/27/2017	Thu 3/30/2017

(b) 2016 Sept NCBS.

(c) 2016 June NCBS.

	Date		Date
1	Thu 8/25/2016	1	Mon 6/13/2016
2	Thu 9/01/2016	2	Wed 6/15/2016
3	Thu 9/08/2016	3	Fri 6/24/2016
4	Thu 9/15/2016	4	Tue 7/05/2016

Observed Call Data

A. Raim (Census Bureau) Call Uniformity Introduction 6/28

Inference Approach

- To our knowledge, inference comparing the uniformity of two discrete distributions is not standard. We consider Kullback-Leibler (K-L) divergence and entropy and make use of basic large sample theory.
- Many conventional tests are designed to detect departure from equality;
 e.g. chi-square and Kolmogorov-Smirnov tests.
- Cover and Thomas (2006) introduces K-L distance, entropy, and related concepts, and discusses fundamental applications in information theory.
- K-L divergence and entropy have been used to justify information criteria (Konishi and Kitagawa, 2008), to obtain variational approximations to complicated distributions (Ormerod and Wand, 2010; Blei et al., 2017), and as a basis for inference (Pardo, 2006; Girardin and Lequesne, 2017).
- Paninski (2008) tests for departure between single discrete distribution and discrete uniform in a sparse setting (many categories and few observations).

Quantifying "More Uniform"

- Suppose $\mathbf{p} = (p_1, \dots, p_k)$ and $\mathbf{q} = (q_1, \dots, q_k)$ are probability distributions on categories labeled $(1, \dots, k)$.
- Let $D(\mathbf{p}, \mathbf{q}) = \sum_{j=1}^{k} p_j \log(p_j/q_j)$ be the Kullback-Leibler (K-L) divergence.
- Let $\bar{e} = (1/k \dots, 1/k)$ denote the discrete uniform distribution and e_j denote a vector with 1 in the *j*th entry and zeros elsewhere.
- ullet We will say that $oldsymbol{q}$ is a "more uniform" distribution than $oldsymbol{p}$ if

$$D(\boldsymbol{p}, \bar{\boldsymbol{e}}) > D(\boldsymbol{q}, \bar{\boldsymbol{e}}) \iff \mathcal{E}(\boldsymbol{p}) < \mathcal{E}(\boldsymbol{q}),$$

where $\mathcal{E}(\boldsymbol{p}) = -\sum_{i=1}^k p_i \log p_i$ is the entropy.

• The entropy of any **p** is bounded, with

$$\begin{split} \mathcal{E}(\pmb{\rho}) &\leq \mathcal{E}(\bar{\pmb{e}}) = \log k, \\ \mathcal{E}(\pmb{\rho}) &\geq \mathcal{E}(\pmb{e}_j) = 0, \quad \text{for any } j = 1, \dots, k. \end{split}$$

8/28

Quantifying "More Uniform"

- Suppose p and q are parameterized by θ (which depends on the choice of model).
- Our quantity of interest is the difference in entropy $g(\theta) = \mathcal{E}(q) \mathcal{E}(p)$.
- This quantity is bounded, with $-\log k \le g(\theta) \le \log k$.
- We will consider testing hypotheses of the form

$$H_0: g(\theta) = 0$$
 vs. $H_1: g(\theta) \neq 0$,

$$H_0: g(\theta) \leq 0$$
 vs. $H_1: g(\theta) > 0$,

$$H_0: g(\theta) \ge 0$$
 vs. $H_1: g(\theta) < 0$.

9/28

Example 1

- Dist'ns: $\mathbf{p} = \frac{1}{25}(10, 10, 1, 1, 1, 1, 1)$ and $\mathbf{q} = \frac{1}{15}(5, 5, 1, 1, 1, 1, 1)$.
- Entropies: $\mathcal{E}(\mathbf{p}) = 1.3768$ and $\mathcal{E}(\mathbf{q}) = 1.6351$.
- Entropy difference: $g(\theta) = \mathcal{E}(q) \mathcal{E}(p) = 0.2583$.

A. Raim (Census Bureau) Call Uniformity

Example 2

- Distins: $\boldsymbol{p} = \frac{1}{28}(7,6,5,4,3,2,1)$ and $\boldsymbol{q} = \frac{1}{15}(10,10,10,10,10,1,1)$.
- Entropies: $\mathcal{E}(\boldsymbol{p})=1.8091$ and $\mathcal{E}(\boldsymbol{q})=1.7372$.
- Entropy difference: $g(\theta) = \mathcal{E}(\mathbf{q}) \mathcal{E}(\mathbf{p}) = -0.0719$.

Multinomial Model

- We want to compare two census experiments where I mailing schedules were used among them.
- For each mailing schedule, calls were collected for J weeks.
- Let $X_{ij} = (X_{ij1}, \dots, X_{ijk})$ be the call counts observed on (Sun, Mon, ..., Sat) for the jth week and the ith mailing schedule, $i = 1, \dots, I$ and $j = 1, \dots, J$.
- Assume that

$$m{X}_{ij} \overset{\mathsf{ind}}{\sim} \mathsf{Mult}_k(m_{ij}, m{p}_{ij}), \quad \mathsf{where} \ m{p}_{ij} = (p_{ij1}, \dots, p_{ijk})$$

is the (unknown) day-of-week distribution and $m_{ij} = \sum_{\ell=1}^k X_{ij\ell}$ is the (fixed) total call count.

• Let $\theta = (\boldsymbol{p}_{11}, \dots, \boldsymbol{p}_{IJ})$ be the unknown probabilities and $\hat{\theta} = (\hat{\boldsymbol{p}}_{11}, \dots, \hat{\boldsymbol{p}}_{IJ})$ be the sample proportions with $\hat{\boldsymbol{p}}_{ij} = \boldsymbol{X}_{ij}/m_{ij}$.

Scenario S1

- This scenario consists of two census experiments with one mailing schedule used in each.
- This covers the "2016 June NCBS vs. 2016 Sept NCBS" analysis.
- Here we are interested in

$$g_j(\boldsymbol{\theta}) = \mathcal{E}(\boldsymbol{p}_{2j}) - \mathcal{E}(\boldsymbol{p}_{1j}),$$

for each week $j = 1, \ldots, J$.

Scenario S2

- This scenario consists of two census experiments with one mailing schedule used in the first and two used in the second.
- This covers the "2016 Sept NCBS versus 2017 March NCBS" and "2016 June NCBS versus 2017 March NCBS" analyses.
- Let $\mathbf{q}_j = (q_{j1}, \dots, q_{jk})$ be the overall day-of-week distribution for calls from the *j*th week of the second experiment.
- Let π_j be the probability of a call received during week j being from first mailing schedule.
- By the law of total probability,

$$\begin{split} q_{j\ell} &= \mathsf{P}\{\mathsf{Call} \ \mathsf{occurs} \ \mathsf{on} \ \mathsf{day}\text{-of-week} \ \ell \mid \mathsf{Schedule} \ 1\} \ \mathsf{P}\{\mathsf{Schedule} \ 1\} \\ &+ \mathsf{P}\{\mathsf{Call} \ \mathsf{occurs} \ \mathsf{on} \ \mathsf{day}\text{-of-week} \ \ell \mid \mathsf{Schedule} \ 2\} \ \mathsf{P}\{\mathsf{Schedule} \ 2\} \\ &= \pi_{j} p_{2j\ell} + (1-\pi_{j}) p_{3j\ell}. \end{split}$$

Then we may write $\mathbf{q}_j = \pi_j \mathbf{p}_{2j} + (1 - \pi_j) \mathbf{p}_{3j}$, and our ultimate quantities of interest are

$$g_i(\boldsymbol{\theta}) = \mathcal{E}(\boldsymbol{q}_i) - \mathcal{E}(\boldsymbol{p}_{1i}), \quad j = 1, \dots, J.$$

14/28

Designating Weeks

- For each census experiment, we designate day 1 as the day of the first mailing. For the 2017 March NCBS, day 1 is the Monday of the very first mailing.
- We then designate week 1 as days 1–7, week 2 as days 8–14, and so on.
- Weekends were kept intact rather than being combined or discarded.
- We consider weeks 1–5 in each census experiment, and disregard calls which occurred in week 6 or later because call activity became sparse.
- According to our definition of weeks, Thursday Mailout group calls for the 2017 March NCBS will be extremely unlikely. Therefore, staggering has very little effect on week 1.
- Alternative definitions for weeks can change the results.

Tests and Confidence Limits

- Let $\mathbf{c} = (c_1, \dots, c_l)$ and $\mathbf{d} = (d_1, \dots, d_l)$ be given probability distributions on $\{1, \dots, l\}$.
- Let us generally write for the *j*th week,

$$g_j(\theta) = \mathcal{E}(c_1 \boldsymbol{p}_{1j} + \cdots + c_l \boldsymbol{p}_{lj}) - \mathcal{E}(d_1 \boldsymbol{p}_{1j} + \cdots + d_l \boldsymbol{p}_{lj}).$$

• We do not have a situation where two census experiments used data from a common mailing schedule. Therefore, in practice, we will have $c_i d_i = 0$ for i = 1, ..., I.

Tests and Confidence Limits

• For large samples (large m_{ij}), we approximately have

$$egin{aligned} \hat{m{ heta}} &\sim \mathsf{N}(m{ heta}, m{\Sigma}), \ m{\Sigma} &= \mathsf{Blockdiag}\left(m_{ij}^{-1}\left[\mathsf{Diag}(m{p}_{ij}) - m{p}_{ij}m{p}_{ij}^{ op}
ight]: i = 1, \dots, I; j = 1, \dots, J
ight). \end{aligned}$$

• By the Delta method, we approximately have (for large m_{ij})

$$\begin{split} g_{j}(\hat{\boldsymbol{\theta}}) &\sim \mathsf{N}\left(g_{j}(\boldsymbol{\theta}), \sigma_{g_{j}(\boldsymbol{\theta})}^{2}\right), \quad \text{where} \\ \sigma_{g_{j}(\boldsymbol{\theta})}^{2} &= \left[\frac{\partial g_{j}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]^{\top} \boldsymbol{\Sigma}\left[\frac{\partial g_{j}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right], \\ \frac{\partial g_{j}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} &= \begin{pmatrix} \boldsymbol{e}_{j} \otimes \left[c_{1} \nabla \mathcal{E}\left(\sum_{i=1}^{I} c_{i} \boldsymbol{p}_{ij}\right) - d_{1} \nabla \mathcal{E}\left(\sum_{i=1}^{I} d_{i} \boldsymbol{p}_{ij}\right)\right] \\ & \vdots \\ \boldsymbol{e}_{j} \otimes \left[c_{l} \nabla \mathcal{E}\left(\sum_{i=1}^{I} c_{i} \boldsymbol{p}_{ij}\right) - d_{l} \nabla \mathcal{E}\left(\sum_{i=1}^{I} d_{i} \boldsymbol{p}_{ij}\right)\right] \end{pmatrix}, \\ \nabla \mathcal{E}(\boldsymbol{p}) &= (-\log(\rho_{2}/\rho_{1}), \dots, -\log(\rho_{k}/\rho_{1}))^{\top}. \end{split}$$

• Here, \otimes denotes the matrix Kronecker product and the first probability $p_{ij1} = 1 - \sum_{\ell=2}^{k} p_{ij\ell}$ is taken to be the baseline for each i, j.

A. Raim (Census Bureau)

Tests and Confidence Limits

• Let
$$\mathcal{Z} = g_j(\hat{\boldsymbol{\theta}}) \bigg/ \sqrt{\sigma_{g_j(\hat{\boldsymbol{\theta}})}^2}$$
 where $g_j(\hat{\boldsymbol{\theta}}) \stackrel{.}{\sim} \mathsf{N}\left(g_j(\boldsymbol{\theta}), \sigma_{g_j(\boldsymbol{\theta})}^2\right)$.

- Under the restriction $g_i(\theta) = 0$, we have $\mathcal{Z} \sim N(0,1)$.
- ullet tests corresponding to our stated three hypotheses are
 - 1. Reject $H_0: g(\theta) = 0$ if $|\mathcal{Z}| > z_{\alpha/2}$.
 - 2. Reject $H_0: g(\theta) \leq 0$ if $\mathcal{Z} > z_{\alpha}$,
 - 3. Reject $H_0: g(\theta) \geq 0$ if $\mathcal{Z} < z_{\alpha}$,

where z_{α} are critical N(0,1) values.

- Corresponding $1-\alpha$ level confidence limits are
 - 1. $g(\hat{\theta}) \pm z_{\alpha/2} \sigma_{g(\hat{\theta})}$,
 - 2. $g(\hat{\theta}) z_{\alpha}\sigma_{g(\hat{\theta})}$,
 - 3. $g(\hat{\theta}) + z_{\alpha}\sigma_{g(\hat{\theta})}$.

2016 Sept NCBS vs. 2017 March NCBS

$$H_0: g_j(\boldsymbol{\theta}) \leq 0$$
 vs. $H_1: g_j(\boldsymbol{\theta}) > 0$

 H_0 : "The day-of-week distribution in week j resulting from the 2016 September NCBS mailing schedule has **larger or equal** entropy than the day-of-week distribution resulting from the 2017 March NCBS mailing schedule" versus H_1 : "Not".

Week	Est	SE	$\mathcal{Z} ext{-stat}$	p-value	CI Lo
1	0.0823	0.0602	1.3681	0.0856	0.0052
2	0.2605	0.0402	6.4731	4.802e-11	0.2090
3	0.1480	0.0411	3.6026	0.0002	0.0953
4	0.2273	0.0453	5.0166	2.629e-07	0.1693
5	-0.3376	0.0775	-4.3563	1.0000	-0.4369

For $\alpha = 0.10$, reject H_0 if $\mathcal{Z} > 1.282$.

2016 June NCBS vs. 2017 March NCBS

$$H_0: g_j(\theta) \le 0$$
 vs. $H_1: g_j(\theta) > 0$

 H_0 : "The day-of-week distribution in week j resulting from the 2016 June NCBS mailing schedule has **larger or equal** entropy than the day-of-week distribution resulting from the 2017 March NCBS mailing schedule" versus H_1 : "Not".

Week	Est	SE	$\mathcal{Z} ext{-stat}$	p-value	CI Lo
1	-0.0153	0.0631	-0.2426	0.5958	-0.0962
2	0.3463	0.0379	9.1467	2.935e-20	0.2977
3	0.3905	0.0442	8.8356	4.980e-19	0.3338
4	0.3523	0.0565	6.2409	2.175e-10	0.2800
5	0.0253	0.0640	0.3956	0.3462	-0.0567

For $\alpha = 0.10$, reject H_0 if Z > 1.282.

2016 June NCBS vs. 2016 Sept NCBS

$$H_0: g_j(\boldsymbol{\theta}) = 0$$
 vs. $H_1: g_j(\boldsymbol{\theta}) \neq 0$

 H_0 : "The day-of-week distribution in week j resulting from the 2016 June NCBS mailing schedule has **equal** entropy to the day-of-week distribution resulting from the 2016 September NCBS mailing schedule" versus H_1 : "Not".

Week	Est	SE	$\mathcal{Z} ext{-stat}$	p-value	CI Lo	CI Hi
1	-0.0976	0.0451	-2.1630	0.0305	-0.1719	-0.0234
2	0.0857	0.0433	1.9782	0.0479	0.0144	0.1570
3	0.2425	0.0365	6.6499	2.934e-11	0.1825	0.3025
4	0.1250	0.0607	2.0602	0.0394	0.0252	0.2247
5	0.3629	0.0535	6.7823	1.183e-11	0.2749	0.4509

For $\alpha = 0.10$, reject H_0 if $|\mathcal{Z}| > 1.645$.

Conclusions

- We compared uniformity of two discrete distributions using procedures based on the Delta method.
- The staggered strategy yielded higher entropy than the two unstaggered experiments toward the middle of the study period, after both Monday and Thursday Mailout groups received their first mailing.
- However, the two unstaggered strategies also yielded different entropies from each other. This suggests that other factors beside staggering affect the uniformity.
- Entropy difference becomes smaller when component distributions are both closer to uniform, which makes differences harder to detect with the Z-statistic.
- The Delta method estimator for entropy can be quite biased for small samples. It may be possible to improve small sample properties.

Contact: andrew.raim@census.gov

A. Raim (Census Bureau) Call Uniformity Conclusions

References I

- David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians. Journal of the American Statistical Association, 112 (518):859–877, 2017.
- John Chesnut. Telephone questionnaire assistance. Census 2000 Evaluation A.1.a, U.S. Census Bureau, 2003, URL https://www.census.gov/pred/www/rpts/A.1.a.pdf.
- Julia Coombs. Analysis report for the small-scale mailout testing program June 2016 test on the placement and length of the user ID for an online Census Bureau survey. In 2020 Research and Testing. 2017. (Internal Report).
- Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley, 2nd edition, 2006.
- Casey Eggleston and Julia Coombs. Effect of data use statements and postcard format on login rates for a mandatory online Census Bureau survey. In 2020 Research and Testing. 2017. (Internal Report).
- Valérie Girardin and Justine Leguesne. Entropy-based goodness-of-fit tests—a unifying framework: Application to DNA replication. Communications in Statistics - Theory and Methods, 2017. doi: 10.1080/03610926.2017.1401084.

A. Raim (Census Bureau) Call Uniformity

References II

- Sadanori Konishi and Genshiro Kitagawa. *Information criteria and statistical modeling*. Springer, 2008.
- Elizabeth Nichols, Sarah Konya, Rachel Horwitz, and Andrew Raim. The effect of the mail delivery date on survey login rates and helpline call rates. In *2020 Research and Testing Report*. 2018. (Forthcoming).
- J. T. Ormerod and M. P. Wand. Explaining variational approximations. *The American Statistician*, 64(2):140–153, 2010.
- Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete data. *IEEE Transactions on Information Theory*, 54(10):4750–4755, 2008.
- Leandro Pardo. Statistical inference based on divergence measures. Chapman & Hall/CRC, 2006.
- U.S. Census Bureau. 2020 Census Operational Plan, 2017. URL https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/planning-docs/operational-plan.html. Version 3.0.
- Kevin Zajac. 2010 census telephone questionnaire assistance assessment report. 2010 Census Planning Memoranda Series No. 231, U.S. Census Bureau, 2012. URL https:
 - $//{\tt www.census.gov/2010census/pdf/2010_Census_TQA_Assessment.pdf}$

A. Raim (Census Bureau) Call Uniformity References

Call Volumes by Week

			2017 March			
Week	2016 June	2016 Sept	Mon Mailout	Th Mailout	Total	
1	332	15	122	6	128	
2	764	626	225	251	476	
3	757	777	151	81	232	
4	367	837	177	151	328	
5	293	484	46	138	184	
Total	2513	2739	721	627	1348	

Weekly Estimates

2016 September NCBS vs. 2017 March NCBS

								Ê
Week	$\hat{m{p}}(exttt{Week})$							
1	0.3857	0.3327	0.2388	0.0245	0.0122	0.0061	0.0000	1.2515
2	0.4224	0.3077	0.1190	0.0581	0.0421	0.0276	0.0232	1.4650
3	0.3835	0.2361	0.1247	0.1093	0.0670	0.0546	0.0247	1.6414
4	0.4545	0.2045	0.1212	0.1193	0.0473	0.0341	0.0189	1.5272
5	0.3256	0.1628	0.1550	0.1395	0.1085	0.0543	0.0543	1.7819
Week				$\hat{m{q}}(\mathtt{Week})$				Ê
1	0.3955	0.3284	0.1791	0.0522	0.0448	0.0000	0.0000	1.3338
2	0.2925	0.2054	0.1826	0.1535	0.1100	0.0311	0.0249	1.7255
3	0.3419	0.1581	0.1496	0.1026	0.0940	0.0940	0.0598	1.7894
4	0.2654	0.2099	0.1852	0.1636	0.1111	0.0340	0.0309	1.7545
5	0.4508	0.2798	0.1088	0.0622	0.0622	0.0259	0.0104	1.4443

A. Raim (Census Bureau) Call Uniformity Appendix

Weekly Estimates

2016 June NCBS vs. 2017 March NCBS

	I							Ê
Week	$\hat{m{ ho}}(exttt{Week})$							
1	0.4023	0.3456	0.1133	0.0793	0.0595	0.0000	0.0000	1.3492
2	0.4565	0.2798	0.1285	0.0763	0.0469	0.0067	0.0054	1.3793
3	0.4676	0.2444	0.1321	0.0819	0.0647	0.0053	0.0040	1.3989
4	0.5431	0.1802	0.0992	0.0653	0.0522	0.0470	0.0131	1.4022
5	0.4505	0.2344	0.1465	0.1136	0.0403	0.0147	0.0000	1.4190
Week				$\hat{m{q}}(\mathtt{Week})$				Ê
1	0.3955	0.3284	0.1791	0.0522	0.0448	0.0000	0.0000	1.3338
2	0.2925	0.2054	0.1826	0.1535	0.1100	0.0311	0.0249	1.7255
3	0.3419	0.1581	0.1496	0.1026	0.0940	0.0940	0.0598	1.7894
4	0.2654	0.2099	0.1852	0.1636	0.1111	0.0340	0.0309	1.7545
5	0.4508	0.2798	0.1088	0.0622	0.0622	0.0259	0.0104	1.4443

A. Raim (Census Bureau) Call Uniformity Appendix

Weekly Estimates

June NCBS vs. 2016 September NCBS

								Ê
Week	$\hat{m{p}}(exttt{Week})$							
1	0.4023	0.3456	0.1133	0.0793	0.0595	0.0000	0.0000	1.3492
2	0.4565	0.2798	0.1285	0.0763	0.0469	0.0067	0.0054	1.3793
3	0.4676	0.2444	0.1321	0.0819	0.0647	0.0053	0.0040	1.3989
4	0.5431	0.1802	0.0992	0.0653	0.0522	0.0470	0.0131	1.4022
5	0.4505	0.2344	0.1465	0.1136	0.0403	0.0147	0.0000	1.4190
Week				$\hat{m{q}}(\mathtt{Week})$				Ê
1	0.3857	0.3327	0.2388	0.0245	0.0122	0.0061	0.0000	1.2515
2	0.4224	0.3077	0.1190	0.0581	0.0421	0.0276	0.0232	1.4650
3	0.3835	0.2361	0.1247	0.1093	0.0670	0.0546	0.0247	1.6414
4	0.4545	0.2045	0.1212	0.1193	0.0473	0.0341	0.0189	1.5272
5	0.3256	0.1628	0.1550	0.1395	0.1085	0.0543	0.0543	1.7819

A. Raim (Census Bureau) Call Uniformity Appendix