
Sample Size Selection in
Continuation-Ratio Logit Models

Andrew M. Raima∗, Thomas Mathewa,b,
Kimberly F. Sellersa,c, Renee Ellisd, Mikelyn Meyersd

aCenter for Statistical Research and Methodology, U.S. Census Bureau
bDept of Mathematics and Statistics, University of Maryland, Baltimore County
cDept of Mathematics and Statistics, Georgetown University
dCenter for Behavioral Science Methods, U.S. Census Bureau

This presentation is released to inform interested par-

ties of ongoing research and to encourage discussion of

work in progress. The views expressed are those of the

authors and not those of the U.S. Census Bureau.

∗Email: andrew.raim@census.gov Page 1 of 2

� Statistical agencies depend on data collected through contact
with the public. Agencies may conduct experiments to study
changes in response rates when contact procedures are altered.

� To study the effect of experimental factors on response rate,
an experimenter might consider a logistic regression model with
“success” taken to be a successful contact.

� When multiple contact attempts are made to the same respon-
dent, effects may vary by attempt, and the experimenter may
wish to account for this.

� Here we consider the continuation-ratio logit (CRL) model (e.g.
Agresti, 2013), a sequential regression model where binary trials
are carried out until either success or up to L failures.

� In this work, we consider the problem of sample size determina-
tion based on the Wald test of a general linear hypothesis.

� We present an illustration inspired by an experiment being con-
sidered for the 2020 Census Nonresponse Followup operation.

Summary

� Let W ∈ {1, . . . , L+ 1} be a random variable with P(W = `) =
p`
∏`−1

b=1(1− pb), given probabilities p = (p1, . . . , pL).

� For ` ∈ {1, . . . , L+ 1}, we may then write

p` =
P(W = `)

P(W = `) + · · ·+ P(W = L+ 1)
= P(W = ` |W ≥ `)

as a conditional probability of success during the `th trial, given
that trials 1, . . . , `− 1 were unsuccessful (with pL+1 ≡ 1).

� We will write W ∼ CRLL(p) to describe this distribution. A
CRL regression model for subjects i = 1, . . . , n is

Wi ∼ CRLL(pi), logit(pi`) = x>i`β, ` = 1, . . . , L.

� The likelihood, score, and information matrix are

L(β) =
n∏

i=1

L+1∏
`=1

[
pi`

`−1∏
b=1

(1− pib)

]I(wi=`)

,

S(β) =

n∑
i=1

L+1∑
`=1

[
I(wi = `)− I(wi ≥ `)G(ηi`)

]
xi`,

I(β) = X>DβX, Dβ = Diag

{
g(x>i`β)

`−1∏
b=1

[1− pib]

}
,

where G(x) is the inverse logit function and g(x) = G′(x).

Continuation-Ratio Logit Model

� An observed wi can be recoded using L binary variables
(yi1, . . . , yiL), with yi` = 1 if ` = wi, yi` = 0 if ` < wi,
and yi` = NA if ` > wi.

� The CRL likelihood is equivalent to logistic regression based on
observations {yi`} with NA values dropped.

� Logistic regression can be used to compute the CRL MLE β̂, but
associated variance estimates will generally differ from I−1(β̂).

Recoding

� Given a known matrix C ∈ Rq×d with rank q ≤ d and known
vector c0 ∈ Rq, consider the general linear hypotheses

H0 : Cβ = c0 vs. H1 : Cβ 6= c0.

� A Wald test with significance level α is

Reject H0 if T > χ2
q(1− α), where

T = (Cβ̂ − c0)>(CI−1(β̂)C>)−1(Cβ̂ − c0)

and χ2
q(γ) is the γ quantile of χ2 with q degrees of freedom.

� For large samples, the power of the test is approximately

$ = 1− FT (χ2
q(1− α); q, ψ(β)), with

ψ(β) = (Cβ − c0)>(CI−1(β)C>)−1(Cβ − c0),

where FT (w; q, ψ) is the CDF of χ2 with q degrees of freedom
and non-centrality parameter ψ.

� Question: When planning an experiment where the objective is
to carry out this test, how to select an adequate sample size?

Testing Problem

� For this work, we assume the “nuisance” parameter is known.
That is, there is a B ∈ R(q−d)×d so that the matrix
(B> C>)> is non-singular and Bβ = b0 is known.

� Covariates X = {x11, . . . ,xnL} are assumed to be known.

� We characterize the departure from H0 using ∆ ≥ 0, and let
S(c0, b0,∆) = {β ∈ Rd : ‖Cβ − c0‖ = ∆,Bβ = b0}.

� For a given ∆, the power $(β) may vary for β ∈ S(c0, b0,∆).

� To be conservative, we take the power to be $(β̃) using

β̃ = argmin
β∈S(c0,b0,∆)

ψ(β).

� Using an appropriate transformation, this becomes an uncon-
strained minimization problem.

Computing Power

Given covariate data X, an investigation to determine sample size
can be carried out as follows:

1. Determine samples J1, . . . ,Jm ⊆ {1, . . . , n} of increasing
size which are viable for the experiment.

2. Determine a grid {∆1, . . . ,∆r} of effect sizes to consider.

3. For each combination of ∆ ∈ {∆1, . . . ,∆r} and J ∈
{J1, . . . ,Jm}, compute β̃ to find power $(β̃).

We can then select the smallest j ∈ {1, . . . ,m} which achieves
sufficient power and sensitivity.

Determining Sample Size

� Care must be taken when selecting the number of attempts L to
model; too many can lead to an issue of sparse categories.

� To see this, consider the simple model W
ind∼ CRL5(p, . . . , p);

some probabilities P(W = `) = p(1− p)`−1 are shown below.

Attempt

p 1 2 3 4 5 6+

0.05 0.05 0.048 0.045 0.0429 4.073E-2 7.738E-1
0.10 0.10 0.090 0.081 0.0729 6.561E-2 5.905E-1
0.25 0.25 0.188 0.141 0.1055 7.910E-2 2.373E-1
0.40 0.40 0.240 0.144 0.0864 5.184E-2 7.876E-2
0.60 0.60 0.240 0.096 0.0384 1.536E-2 1.024E-2
0.75 0.75 0.188 0.047 0.0117 2.930E-3 9.766E-4
0.90 0.90 0.090 0.009 0.0009 9.000E-5 1.000E-5
0.95 0.95 0.048 0.002 0.0001 5.938E-6 3.125E-7

� Large p may give very small P(W = `) for ` later in the sequence.
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� The following illustration is based on an actual experiment being
considered for 2020 Census Nonresponse Followup (NRFU).

� A training module has been developed to guide enumerators
in administering the census questionnaire to Spanish-speaking
households. The objective is to improve consistency in messag-
ing and in the usage of official translations (Ellis et al., 2018).

� Main study question: does the new training significantly affect
response rates for Spanish-speaking households? To answer this
question, we describe a statistical experiment under CRL and
investigate sample size.

� Experimental subjects are Spanish-speaking households in
NRFU, not known with certainty before the operation.

� Control (“no training”) or experimental (“training”) treatments
are assigned to enumerators at the level of Area Census Office
(ACO). For this discussion, an ACO can be considered to be an
administrative grouping of nearby tracts.

� In the 2020 Census, cases will be assigned dynamically based
on enumerator availability and workloads (U.S. Census Bureau,
2019). A household may be visited by multiple enumerators.

� Fourteen ACOs were pre-selected from several metropolitan sta-
tistical areas (MSAs) in Dallas, Houston, and Los Angeles. Dis-
played data are from 2019 Planning Database.

Percent HH Counts

Area Group Spanish Selfresp Total Target

Dallas Ctrl 6.8 62.8 352,347 11,900
Dallas Ctrl 14.2 48.5 293,170 24,847
Dallas Ctrl 10.4 57.4 337,574 19,828
Dallas Ctrl 24.9 41.2 277,452 43,271
Dallas Ctrl 11.6 55.6 335,557 23,521
Dallas Ctrl 4.0 66.3 482,153 8,084
LA Ctrl 13.9 49.5 441,726 35,989
Houston Expt 21.0 44.1 253,932 33,305
Houston Expt 10.1 47.9 278,782 18,412
Houston Expt 15.8 44.0 282,424 31,434
Houston Expt 21.6 41.3 240,950 36,575
Houston Expt 20.0 40.7 238,144 32,587
Houston Expt 8.0 61.3 268,572 9,525
LA Expt 16.1 48.5 496,564 50,740

Total 4,579,347 380,018

� Main sample size question: is this initial selection of ACOs
adequate for the experiment?

Illustration

� Control and experimental ACOs have been geographically sepa-
rated to avoid “contamination” in the study, where households
are visited by both types.

� Let the number of contacts needed for a response be

Wijk ∼ CRLL(pijk), i = i, . . . , I = 7,

j = 1, . . . , J = 2,

k = 1, . . . ,Kij ,

for the kth Spanish-speaking NRFU household within the ith
ACO which received the jth treatment.

� The control and experimental treatments are indexed by j = 1
and j = 2, respectively.

� A rough estimate of Kij is obtained from the 2019 Planning
Database using

HH Target = HH Total×
Pct Spanish

100
×

1− Pct Selfresp

100
.

� For probabilities of a response at each attempt, we consider

logit(pijk`) = µ+ τj + δ` + (τδ)j`

= s>j`β,

assuming a parameterization

β =
(
µ, τ1, δ1, . . . , δL−1, (τδ)11, . . . , (τδ)1,L−1

)
∈ R2L,

assuming the constraints

J∑
j=1

τj = 0,
L∑

`=1

δ` = 0,
J∑

j=1

(τδ)j` = 0,
L∑

`=1

(τδ)j` = 0.

� The effects are: an intercept term µ, effects due to the treatment
τj , effects due to contact attempt δ`, and effects (τδ)j` due to
treatment-attempt interaction.

� Sample size will be based on a significance level α = 0.10 test
for the presence of any treatment effects

H0 : τ1 = 0, δ`, (τδ)1` = 0, for ` = 1, . . . , L− 1

vs. H1 : Not,

so that µ is the nuisance parameter.

� Rewriting this as a general linear hypothesis, we may investigate
the relationship between the sample size, the effect size ∆, the
power $, and µ.

Illustration II

� Simulation results confirm that the non-central χ2 power approx-
imation breaks down when categories become sparse. Further-
more, MLE computation becomes more likely to fail.

� Assuming the non-central χ2 power approximation is appropri-
ate, power declines sharply with increasing L when the baseline
response effect µ is large; i.e., as logit−1(µ) approaches 1.
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� Assuming µ ≤ logit(0.90), we would suggest L = 3. This gives
power $ ≈ 0.77 to detect effect size ∆ = 0.1 with the 14 ACOs.

� Details will be provided in Raim et al. (2020+, in preparation).

� Mixed effects and handling of unknown quantities—including
Kij and nuisance parameters—will be considered in future work.

Results


