The Approximate Fisher Information Matrix for Multinomial Mixture Models

Summary

- Mixture distributions are useful in many problems, but can also be difficult to work with
- Minglei Liu (2005, PhD Thesis) studied estimation in multinomial mixture models. Related work has been done by Morel \& Neerchal (1993, 1998, 2005)
- Here we present one of the key results, a large cluster approximation to the FIM
- The FIM approximation for the general multinomial mixture was shown to be useful in the Fisher Scoring algorithm. Here we consider its direct usage in inference

Mixture multinomial model

- Suppose we have s multinomial populations

$$
f\left(\boldsymbol{x} \mid \boldsymbol{p}_{1}, m\right), \ldots, f\left(\boldsymbol{x} \mid \boldsymbol{p}_{s}, m\right), \quad \boldsymbol{p}_{\ell}=\left(p_{\ell 1}, \ldots, p_{\ell k}\right)
$$

- If population ℓ occurs with proportion π_{ℓ}, and we draw X from the mixed population

$$
\boldsymbol{X} \sim f_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{\ell=1}^{s} \pi_{\ell} f\left(\boldsymbol{x} \mid \boldsymbol{p}_{\ell}, m\right), \quad \boldsymbol{x} \in \mathcal{X}, \quad \boldsymbol{\theta}=\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{s}, \boldsymbol{\pi}\right)
$$

- Mixture distributions are a natural way to deal with mixed populations. A housing satisfaction survey from J. R. Wilson (1989) is an example featuring multinomials

Non-metropolitan area										Metropolitan area				
Neighborhood	US	S	VS	Neighborhood	US	S	VS							
1	3	2	0	1	0	4	1							
2	3	2	0	2	0	5	1							
3	0	5	0	3	0	3	2							
				\ldots										
17	4	1	0	17	4	1	0							
18	5	0	0											

- Some related problems (\checkmark means mixtures are often applied here)

Classification: Given samples $\left(\boldsymbol{x}_{1}^{(\ell)}, \ldots, \boldsymbol{x}_{n_{\ell}}^{(\ell)}\right)$ from each population $\ell=$
$1, \ldots, s$, classify a new observation \boldsymbol{x}
Discriminant Analysis: Given samples $\left(\boldsymbol{x}_{1}^{(\ell)}, \ldots, \boldsymbol{x}_{n_{\ell}}^{(\ell)}\right)$, find a rule to best distinguish between the s groups
\checkmark Clustering: Given a sample $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ from the mixed population, try to determine which observations belong to the same groups. If s is not known the problem is harder
\checkmark Modeling overdispersion: In usual inference problems such as point estimation, confidence intervals, and hypothesis testing, model a mixed population with a mixture model of simpler distributions to capture the differences between groups

References

[1] M. Liu, Estimation for Finite Mixture Multinomial Models, PhD Thesis, University of Maryland, Baltimore County, Department of Mathematics and Statistics, 2005.
[] J.G. Morel and N.K. Nagaraj, A Finite Mixture Distribution for Modelling Multinomial Extra J.G. Morel and N.K. Nagaraj, A Finite Mixture
Variation, Biometrika 80 (1993), pp. 363-471.
(3] N.K. Neerchal and J.G. Morel, Large Cluster Results for Two Parametric Multinomial Extra Variation Models, Journal of the American Statistical Association 93 (1998), pp. 1078-1087.
[4] N.K. Neerchal and J.G. Morel, An improved method for the computation of maximum likelihood estimates for multinom
Analysis 49 (2005), pp. 33-43.
The computational resources used for this work were provided by the UMBC High Performance Computing Facility at the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/ hpcf for information on the facility and its uses.

FIM Approximation

- The Fisher Information Matrix (FIM, "outer product" form)

$$
\mathcal{I}(\boldsymbol{\theta}):=\mathrm{E}\left[\left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\boldsymbol{\theta}}(X)\right)\left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\boldsymbol{\theta}}(X)\right)^{T}\right]
$$

is extremely useful for inference and model selection

- But a closed form expression cannot be obtained for most mixture models
- For the mixture of multinomials, the expectation can be computed exactly by summing over the sample space (which is finite but grows quickly with k and m)

$$
\mathcal{I}(\boldsymbol{\theta})=n \sum_{\boldsymbol{x} \in \mathcal{X}}\left\{\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\boldsymbol{\theta}}(\boldsymbol{x})\right\}\left\{\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\boldsymbol{\theta}}(\boldsymbol{x})\right\}^{T} f_{\boldsymbol{\theta}}(\boldsymbol{x})
$$

- Liu and Morel \& Nagaraj found an approximation for $\mathcal{I}(\boldsymbol{\theta})$

$$
\begin{array}{rlr}
\widetilde{\mathcal{I}}(\boldsymbol{\theta}) & :=\left(\begin{array}{cccc}
\pi_{1} \boldsymbol{F}_{1} & & & 0 \\
& \ddots & & \\
& & \pi_{s} \boldsymbol{F}_{s} & \\
0 & & \boldsymbol{F}_{\pi}
\end{array}\right) & (s k-1) \times(s k-1) \\
\boldsymbol{F}_{\ell}=m\left[\operatorname{diag}\left(p_{\ell \ell}^{-1}, \ldots, p_{\ell, k-1}^{-1}\right)-p_{\ell k}^{-1} \mathbf{1 1}^{T}\right] & (k-1) \times(k-1) \\
\boldsymbol{F}_{\pi}=\operatorname{diag}\left(\pi_{1}^{-1}, \ldots, \pi_{s-1}^{-1}\right)-\pi_{s}^{-1} \mathbf{1 1}^{T} & (s-1) \times(s-1)
\end{array}
$$

- This has a simple closed form that requires little computation to construct. There are also simple forms for the inverse approximate FIM and determinant
- Has been shown that $\widetilde{\mathcal{I}}(\boldsymbol{\theta})-\mathcal{I}(\boldsymbol{\theta}) \rightarrow 0$ as $m \rightarrow \infty$, for multinomial mixtures
- The approximation can also be used for more complicated mixtures such as RandomClumped Multinomial and Dirichlet Multinomial. These multinomial mixtures feature parameters with functional dependencies on each other. See Neerchal \& Morel (1998)
- In some cases the approximation was shown to work very well even for moderate m

Relationship to complete data FIM

- $\widetilde{\mathcal{I}}(\boldsymbol{\theta})$ turns out to be equivalent to the complete data FIM obtained by considering latent class variables
- This technique is also used in Expectation Maximization (EM)
- Suppose we observe an iid sample $\left(\boldsymbol{X}_{i}, Z_{i}\right), i=1, \ldots n$, where

$$
Z_{i}=\left\{\left.\begin{array}{ll}
1 & \text { wp } \pi_{1} \\
& \cdots \\
s & \text { wp } \pi_{s},
\end{array} \quad \boldsymbol{X}_{i} \right\rvert\, Z_{i}=\ell \quad \sim \operatorname{Mult}\left(\boldsymbol{p}_{\ell}, m\right)\right.
$$

- Then the complete data likelihood is

$$
f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})=\prod_{i=1}^{n} \prod_{\ell=1}^{s}\left[\pi_{\ell} f\left(\boldsymbol{x}_{i} \mid \boldsymbol{p}_{\ell}, m\right)\right]^{I\left(z_{i}=\ell\right)}
$$

- Computing the FIM ("Hessian" form) with respect to this likelihood, we obtain that

$$
\mathrm{E}\left[-\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \log f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})\right] \equiv \widetilde{\mathcal{I}}(\boldsymbol{\theta})
$$

- The classes $\left(Z_{1}, \ldots, Z_{n}\right)$ aren't observable, but they are only used inside the expectation hence we don't need to observe them

Simulation Study

The Wald statistic for testing $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ is
$T_{n}(\hat{\boldsymbol{\theta}})=\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)^{T} \mathcal{I}(\hat{\boldsymbol{\theta}})\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right), \quad T_{n}(\hat{\boldsymbol{\theta}}) \xrightarrow{\mathcal{C}} \chi_{n}^{2}, \quad q=s k-1$. This T can be used to construct an approximate $1-\alpha$ level Wald-type confidence region

$$
\begin{gathered}
R(\hat{\boldsymbol{\theta}})=\left\{\boldsymbol{\theta}_{0}:\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)^{T} \mathcal{I}(\hat{\boldsymbol{\theta}})\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right) \leq \chi_{q, \alpha}^{2}\right\}, \\
\text { rered }
\end{gathered}
$$

an ellipsoid in \mathbb{R}^{q} centered at the MLE $\hat{\boldsymbol{\theta}}$, with shape determined by the FIM. Consider replacing $\mathcal{I}(\hat{\boldsymbol{\theta}})$ with the approximate FIM, which is much easier to compute
$\widetilde{T}_{n}(\hat{\boldsymbol{\theta}})=\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)^{T} \widetilde{\mathcal{I}}(\hat{\boldsymbol{\theta}})\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)$,
We compare T and \widetilde{T} with a simulation, choosing the parameters $\boldsymbol{\theta}$ as

$$
\left(\begin{array}{lll}
\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \boldsymbol{p}_{3}
\end{array}\right) \propto\left(\begin{array}{lll}
1 & 1 & 2 \\
6 & 2 & 1
\end{array}\right), \quad \pi \propto\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Samples were drawn from this binomial mixture 200 times for several m and n. For each sample we compute T and \widetilde{T}, obtaining their empirical distributions under H_{0}.

\widetilde{T} seems to be lagging behind T in terms of the large sample χ_{q}^{2}, even for $m=50$ which may be considered a fairly large cluster size. To see why this is happening, we compare
the two FIMs directly. Consider the following criteria based on the trace distance

$$
d(A, B)=\frac{\operatorname{tr}(A-B)^{T}(A-B)}{\operatorname{tr} B^{T} B}=\frac{\sum_{i} \sum_{j}\left(a_{i j}-b_{i j}\right)^{2}}{\sum_{i} \sum_{j} b_{i j}^{2}} .
$$

For $\boldsymbol{\theta}$ given above, we compute distances for varying m. The left plot shows $d(\widetilde{\mathcal{I}}(\boldsymbol{\theta}), \mathcal{I}(\boldsymbol{\theta}))$ and the right plot shows $d\left(\widetilde{\mathcal{I}}^{-1}(\boldsymbol{\theta}), \mathcal{I}^{-1}(\boldsymbol{\theta})\right)$ which corresponds to the asymptotic covariance matrix.

- Inference based on $\mathcal{I}(\boldsymbol{\theta})$ may not be correct for small to moderate m in the general mixture considered her
- Interesting that $\mathcal{I}(\boldsymbol{\theta})$ works well in estimation procedures like Fisher Scoring, even when m is not large. But it may be too far from $\mathcal{I}(\boldsymbol{\theta})$ to work well in inference
- $\widetilde{\mathcal{I}}(\boldsymbol{\theta})$ may continue to be useful as a computational aid. Consider the approach o Neerchal and Morel (2005), where the approximation is used in Fisher Scoring iterations until convergence, and then one additional iteration is performed with the exact FIM to produce a final result

