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• Mixture distributions are useful in many problems, but can also be difficult to work with

• Minglei Liu (2005, PhD Thesis) studied estimation in multinomial mixture models.
Related work has been done by Morel & Neerchal (1993, 1998, 2005)

• Here we present one of the key results, a large cluster approximation to the FIM

• The FIM approximation for the general multinomial mixture was shown to be useful in
the Fisher Scoring algorithm. Here we consider its direct usage in inference

Summary

• Suppose we have s multinomial populations

f(x | p1,m), . . . , f(x | ps,m), pℓ = (pℓ1, . . . , pℓk)

• If population ℓ occurs with proportion πℓ, and we draw X from the mixed population

X ∼ fθ(x) =

s∑
ℓ=1

πℓf(x | pℓ,m), x ∈ X , θ = (p1, . . . ,ps,π)

• Mixture distributions are a natural way to deal with mixed populations. A housing
satisfaction survey from J. R. Wilson (1989) is an example featuring multinomials

Non-metropolitan area Metropolitan area
Neighborhood US S VS Neighborhood US S VS

1 3 2 0 1 0 4 1
2 3 2 0 2 0 5 1
3 0 5 0 3 0 3 2

. . .
17 4 1 0 17 4 1 0
18 5 0 0

• Some related problems (✓ means mixtures are often applied here)

Classification: Given samples (x
(ℓ)
1 , . . . ,x(ℓ)

nℓ
) from each population ℓ =

1, . . . , s, classify a new observation x

Discriminant Analysis: Given samples (x
(ℓ)
1 , . . . ,x(ℓ)

nℓ
), find a rule to best distin-

guish between the s groups

✓ Clustering: Given a sample (x1, . . . ,xn) from the mixed population, try to deter-
mine which observations belong to the same groups. If s is not known the problem
is harder

✓ Modeling overdispersion: In usual inference problems such as point estimation, con-
fidence intervals, and hypothesis testing, model a mixed population with a mixture
model of simpler distributions to capture the differences between groups

Mixture multinomial model

• The Fisher Information Matrix (FIM, “outer product” form)

I(θ) := E

[(
∂

∂θ
log fθ(X)

)(
∂

∂θ
log fθ(X)

)T
]

is extremely useful for inference and model selection

• But a closed form expression cannot be obtained for most mixture models

• For the mixture of multinomials, the expectation can be computed exactly by summing
over the sample space (which is finite but grows quickly with k and m)

I(θ) = n
∑
x∈X

{
∂

∂θ
log fθ(x)

}{
∂

∂θ
log fθ(x)

}T

fθ(x)

• Liu and Morel & Nagaraj found an approximation for I(θ)

Ĩ(θ) :=


π1F1 0

. . .

πsFs

0 Fπ

 (sk − 1) × (sk − 1)

Fℓ = m
[
diag(p

−1
ℓ1 , . . . , p

−1
ℓ,k−1) − p

−1
ℓk 11

T
]

(k − 1) × (k − 1)

Fπ = diag(π
−1
1 , . . . , π

−1
s−1) − π

−1
s 11

T
(s − 1) × (s − 1)

• This has a simple closed form that requires little computation to construct. There are
also simple forms for the inverse approximate FIM and determinant

• Has been shown that Ĩ(θ) − I(θ) → 0 as m → ∞, for multinomial mixtures

• The approximation can also be used for more complicated mixtures such as Random-
Clumped Multinomial and Dirichlet Multinomial. These multinomial mixtures feature
parameters with functional dependencies on each other. See Neerchal & Morel (1998)

• In some cases the approximation was shown to work very well even for moderate m

FIM Approximation

• Ĩ(θ) turns out to be equivalent to the complete data FIM obtained by considering
latent class variables

• This technique is also used in Expectation Maximization (EM)

• Suppose we observe an iid sample (Xi, Zi), i = 1, . . . n, where

Zi =


1 wp π1

. . .

s wp πs,

Xi | Zi = ℓ ∼ Mult(pℓ,m)

• Then the complete data likelihood is

fθ(x,z) =

n∏
i=1

s∏
ℓ=1

[
πℓf(xi | pℓ,m)

]I(zi=ℓ)

• Computing the FIM (“Hessian” form) with respect to this likelihood, we obtain that

E

[
−

∂2

∂θ∂θT
log fθ(x,z)

]
≡ Ĩ(θ)

• The classes (Z1, . . . , Zn) aren’t observable, but they are only used inside the expec-
tation hence we don’t need to observe them

Relationship to complete data FIM

The Wald statistic for testing H0 : θ = θ0 is

Tn(θ̂) = (θ̂ − θ0)
T I(θ̂)(θ̂ − θ0), Tn(θ̂)

L→ χ
2

q
, q = sk − 1.

This T can be used to construct an approximate 1−α level Wald-type confidence region

R(θ̂) =
{
θ0 : (θ̂ − θ0)

T I(θ̂)(θ̂ − θ0) ≤ χ
2

q,α

}
,

an ellipsoid in Rq centered at the MLE θ̂, with shape determined by the FIM. Consider

replacing I(θ̂) with the approximate FIM, which is much easier to compute

T̃n(θ̂) = (θ̂ − θ0)
T Ĩ(θ̂)(θ̂ − θ0).

We compare T and T̃ with a simulation, choosing the parameters θ as

(
p1 p2 p3

)
∝

(
1 1 2
6 2 1

)
, π ∝

1
2
3

 .

Samples were drawn from this binomial mixture 200 times for several m and n. For each
sample we compute T and T̃ , obtaining their empirical distributions under H0.
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T̃ seems to be lagging behind T in terms of the large sample χ2
q , even for m = 50 which

may be considered a fairly large cluster size. To see why this is happening, we compare
the two FIMs directly. Consider the following criteria based on the trace distance

d(A,B) =
tr(A − B)T (A − B)

trBT B
=

∑
i

∑
j(aij − bij)

2∑
i

∑
j b2

ij

.

For θ given above, we compute distances for varying m. The left plot shows

d
(
Ĩ(θ), I(θ)

)
and the right plot shows d

(
Ĩ−1(θ), I−1(θ)

)
which corresponds to

the asymptotic covariance matrix.
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• Inference based on Ĩ(θ) may not be correct for small to moderate m in the general
mixture considered here

• Interesting that Ĩ(θ) works well in estimation procedures like Fisher Scoring, even
when m is not large. But it may be too far from I(θ) to work well in inference

• Ĩ(θ) may continue to be useful as a computational aid. Consider the approach of
Neerchal and Morel (2005), where the approximation is used in Fisher Scoring iterations
until convergence, and then one additional iteration is performed with the exact FIM
to produce a final result

Simulation Study
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The computational resources used for this work were provided by the UMBC High Performance
Computing Facility at the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/

hpcf for information on the facility and its uses.
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