
An Approximate Fisher Scoring Algorithm for
Finite Mixtures of Multinomials

Andrew M. Raim

Department of Mathematics and Statistics
University of Maryland, Baltimore County

Baltimore, MD, USA

6th Annual Probability and Statistics Day at UMBC
Spring 2012

Joint work with Nagaraj K. Neerchal (UMBC), Minglei Liu (Medtronic),
Jorge G. Morel (Procter & Gamble)



Background

• Morel and Neerchal (1991, 1993, 1998, 2005) studied estimation in their
multinomial model for overdispersion: “Random Clumped Multinomial”.

• They obtained a large cluster approximation to the Fisher Information
Matrix (FIM), and used it to formulate an Approximate Fisher Scoring
Algorithm (AFSA).

• Liu (2005, PhD Thesis) extended the idea to general mixtures of
multinomials, and found some interesting connections between AFSA
and Expectation Maximization (EM).

• This work extends Liu (2005), further investigating the quality of the
FIM approximation and the connection between AFSA and EM.
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Mixture of Multinomials Example

Example: Housing satisfaction survey

Non-metropolitan area Metropolitan area
Neighborhood US S VS Neighborhood US S VS

1 3 2 0 19 0 4 1
2 3 2 0 20 0 5 1
3 0 5 0 21 0 3 2
...

...
17 4 1 0 35 4 1 0
18 5 0 0

With labels, a reasonable likelihood is product of two multinomials

L(θ) =

[
18∏
i=1

f (xi | p1,m)

][
35∏

i=19

f (xi | p2,m)

]
, m = 5.

J. R. Wilson, Chi-Square Tests for Overdispersion with Multiparameter Estimates. Journal

of the Royal Statistical Society (Series C), 38(3):441–453, 1989.
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Mixture of Multinomials Example

Example: Housing satisfaction survey

??? ???
Neighborhood US S VS Neighborhood US S VS

1 3 2 0 19 0 4 1
2 3 2 0 20 0 5 1
3 0 5 0 21 0 3 2
...

...
17 4 1 0 35 4 1 0
18 5 0 0

Without labels, a reasonable likelihood is mixture of two multinomials

L(θ) =
35∏
i=1

{
πf (xi | p1,m) + (1− π)f (xi | p2,m)

}
, m = 5.

J. R. Wilson, Chi-Square Tests for Overdispersion with Multiparameter Estimates. Journal

of the Royal Statistical Society (Series C), 38(3):441–453, 1989.
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Mixture of Multinomials
• Suppose we have s multinomial populations

f (x | pℓ,m) =
m!

x1! . . . xk !
px1ℓ1 . . . p

xk
ℓk · I (x ∈ Ω), ℓ = 1, . . . , s

which occur in the total population with probabilities π1, . . . , πs .

• If we draw T from the mixed population,

T ∼ f (x | θ) =
s∑

ℓ=1

πℓf (x | pℓ,m), θ = (p1, . . . ,ps ,π)

We’ll write T ∼ MultMixk(θ,m).

. . .

Ball 1 Ball m

Bin 1 (p11) Bin 2 (p12) . . . Bin k (p1k) selected wp π1

...

Bin 1 (ps1) Bin 2 (ps2) . . . Bin k (psk) selected wp πs
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Estimation Problem
• Suppose our sample is Xi

ind∼ MultMixk(θ,mi ), i = 1, . . . , n

• Likelihood

L(θ) =
n∏

i=1

f (xi ;θ) =
n∏

i=1

{
s∑

ℓ=1

πℓ

[
mi !

xi1! . . . xik !
pxi1ℓ1 . . . pxikℓk · I (xi ∈ Ω)

]}

• To find MLE θ̂ = (p̂1, . . . , p̂s , π̂), which maximizes the (log) likelihood

• Some options
▶ No nice closed form
▶ Newton-Raphson, Fisher Scoring, Quasi-Newton methods

θ(g+1) = θ(g) − αH−1S(θ(g)), g = 1, 2, . . .

▶ Expectation Maximization (EM)

Score: S(θ) =
∂

∂θ
log L(θ)

FIM: I(θ) = E

{
− ∂2

∂θ∂θT
log L(θ)

}
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Fisher Scoring Algorithm
• The iterations become

θ(g+1) = θ(g) + I−1(θ(g))S(θ(g)), g = 1, 2, . . . ,

but I(θ) may not be easy to compute.

• Naive summation works when sample space Ω is small

I(θ) :=
∑
x∈Ω

{
− ∂2

∂θ∂θT
log f (x | θ)

}
f (x | θ).

• Monte Carlo approximation

• For large clusters (m ↑), Morel & Nagaraj (1991) and Liu (2005, PhD
thesis) propose an approximation (shown for X1 ∼ MultMixk(θ,m))

Ĩ(θ) := Blockdiag (π1F1, . . . , πsFs ,Fπ) ,

Fℓ = m
[
Diag(p−1

ℓ1 , . . . , p−1
ℓ,k−1) + p−1

ℓk 11T
]

Fπ = Diag(π−1
ℓ , . . . , π−1

s−1) + π−1
s 11T

• Result: Ĩ(θ)− I(θ) → 0 as m → ∞.
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Approximate FIM Properties I
• Ĩ(θ) is a block diagonal matrix of Multinomial FIMs.

▶ Simple forms for inverse, trace, and determinant

• Result: Ĩ(θ) is “complete data” FIM of (X,Z )

Z =


1 wp π1

...

s wp πs ,

and (X | Z = ℓ) ∼ Multk(pℓ,m).

So that we have

Ĩ(θ) = E

{
− ∂2

∂θ∂θT
log f (x, z | θ)

}
• Note that EM is based on maximizing

Q(θ,θ′) = Eθ′

[
log f (x, z | θ) | x

]
.
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Approximate FIM Properties II

• Can also show that the inverses converge

I−1(θ)− Ĩ−1(θ) → 0 as m → ∞.

• For any non-singular A,B, and sub-multiplicative matrix norm

B−1 − A−1 = A−1(A− B)B−1

=⇒ ∥A−1 − B−1∥ ≤ ∥A−1∥ · ∥A− B∥ · ∥B−1∥.

• Taking A = I(θ) and B = Ĩ(θ)

∥I−1(θ)− Ĩ−1(θ)∥ ≤ ∥I−1(θ)∥ · ∥I(θ)− Ĩ(θ)∥ · ∥Ĩ−1(θ)∥

which can be shown to converge to 0.

• I(θ) may be singular if identifiability fails to hold on the model.
▶ See Rothenberg (1971) about the connection.
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Approximate FIM Properties III

• Large cluster size (m) needed for

Ĩ(θ) ≈ I(θ) and Ĩ−1(θ) ≈ I−1(θ)

(with inverses apparently converging faster).

• Approximate FIM and inverse are not recommended for general
inference.

• But useful as a tool for estimation, as we will see.
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Approximate Fisher Scoring Algorithm

• Using the approximate FIM in place of the true FIM gives AFSA

θ(g+1) = θ(g) + Ĩ−1(θ(g))S(θ(g)), g = 1, 2, . . .

until
∣∣log L(θ(g+1))− log L(θ(g))

∣∣ < ε.

• Liu (2005, PhD Thesis) derives explicit iterations for each parameter in
θ for both EM and AFSA.

• Under X1, . . . ,Xn
iid∼ MultMixk(θ,m), EM and AFSA iterations are

“equivalent”, given the same starting place θ(g)

π̃
(g+1)
ℓ = π̂

(g+1)
ℓ , p̃

(g+1)
ℓj =

(
π̂
(g+1)
ℓ

π
(g)
ℓ

)
p̂
(g+1)
ℓj +

(
1−

π̂
(g+1)
ℓ

π
(g)
ℓ

)
p
(g)
ℓj .

• Doesn’t hold under the “independent but not iid” case.
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Equivalence of AFSA and EM
AFSA steps are linear combinations of the next EM step and the previous
iterate

π̃
(g+1)
ℓ = π̂

(g+1)
ℓ , p̃

(g+1)
ℓj =

(
π̂
(g+1)
ℓ

π
(g)
ℓ

)
p̂
(g+1)
ℓj +

(
1−

π̂
(g+1)
ℓ

π
(g)
ℓ

)
p
(g)
ℓj .

0 1

p
(g)
`j

p̂
(g+1)
`j

π̂
(g+1)
` /π

(g)
`

p̃
(g

+
1
)

`j

AFSA step compared to previous iterate and EM step

1

When EM is close to convergence, we will have p̃
(g+1)
ℓj ≈ p̂

(g+1)
ℓj .
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Equivalence of AFSA and EM II
• A more general connection is known between EM and iterations of the

form
θ(g+1) = θ(g) + I−1

c (θ(g))S(θ(g)), g = 1, 2, . . . .

• Titterington (1984) shows the two are approximately equivalent (under
regularity conditions)

• And the equivalence is exact when the complete data likelihood is a
regular exponential family

L(µ) = exp
{
b(x) + ηT t+ a(η)

}
,

η = η(µ) : natural parameter,

t = t(x) : sufficient statistic,

µ = E(t(X)) : the parameter of interest.

• For MultMix problem, equivalance is approximate not exact.
▶ Justification for AFSA originally came from Ĩ(θ) and Blischke (1964).
▶ But this result justifies AFSA for finite mixtures other than multinomial.
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Comparison between algorithms
Consider the mixture of two trinomials

Xi
iid∼ MultMix3(θ,m = 20), i = 1, . . . , n = 500(

pT
1

pT
2

)
=

(
1/3 1/3 1/3
0.1 0.3 0.6

)
,

(
π

1− π

)
=

(
0.75
0.25

)
.
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EM
FSA w/ warmup 1e−1

method ε0 tol iter

AFSA — 4.94 × 10−09 36
EM — 5.50 × 10−09 36
FSA ∞ −1.26 × 10−07 100
FSA 10 4.46 × 10−10 16
FSA 1 1.34 × 10−10 20
FSA 0.1 7.84 × 10−10 22
FSA 0.01 1.42 × 10−10 24
FSA 0.001 9.05 × 10−10 26

logLik achieved for exact FSA = -2423.864
logLik achieved for others = -2234.655

Hybrid approach: use AFSA to
warm up, then FSA to finish.



Monte Carlo Comparison of EM and AFSA
Consider a scenario with varying cluster sizes

Yi
ind∼ MultMixk(θ,mi ), i = 1, . . . , n = 500, π = (0.75, 0.25)

W1, . . . ,Wn
iid∼ Gamma(α, β), mi = ⌈Wi⌉.

Ran 1000 reps of nine scenarios and looked at the quantity

1

1000

1000∑
r=1

{
q∨

j=1

∣∣∣∣∣ θ̃
(r)
j − θ̂

(r)
j

θ̃
(r)
j

∣∣∣∣∣
}
.

(kth probability not shown) mi equal α = 100 α = 25
p1 p2 mi = 20 Var(mi ) ≈ 4.083 Var(mi ) ≈ 16.083(

0.1
) (

0.5
)

2.178× 10−6 2.019× 10−6 2.080× 10−6(
0.3

) (
0.5

)
4.073× 10−5 3.501× 10−5 3.890× 10−5(

0.35
) (

0.5
)

8.683× 10−4 2.625× 10−4 2.738× 10−4(
0.4

) (
0.5

)
9.954× 10−3 6.206× 10−2 6.563× 10−2(

0.1, 0.3
) (

1/3, 1/3
)

1.342× 10−3 1.009× 10−3 1.878× 10−3(
0.1, 0.5

) (
1/3, 1/3

)
1.408× 10−6 1.338× 10−6 1.334× 10−6(

0.3, 0.5
) (

1/3, 1/3
)

3.884× 10−6 3.943× 10−6 3.885× 10−6(
0.1, 0.1, 0.3

) (
0.25, 0.25, 0.25

)
8.389× 10−7 8.251× 10−7 8.440× 10−7(

0.1, 0.2, 0.3
) (

0.25, 0.25, 0.25
)

1.523× 10−6 1.472× 10−6 1.408× 10−6
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Conclusions

AFSA is obtained as a Newton-type algorithm using an approximate FIM.

• Nearly equivalent to EM iterations — similar solutions are obtained at
similar rates of convergence

• (EM advantange) M-step can be formulated so it won’t wander
outside parameter space.

• (AFSA advantange) May be easier to formulate when missing data
structure is complicated.
E.g. Random-Clumped Multinomial (Morel & Neerchal 1993).

Result of Titterington (1984) suggests AFSA approach is reasonable for
finite mixtures in general.

Both EM and AFSA suffer from a slow convergence rate.

• Hybrid is recommended for fast convergence and robustness.
• . . . if true FIM is feasible to compute.
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How good is the FIM approximation?
Consider a mixture MultMix2(θ,m) of three binomials, with parameters(

p1 p2 p3
)
=

(
1/7 1/3 2/3

)
, π =

(
1/6 2/6 3/6

)
,

and two matrix distances

d(A,B) = ∥A− B∥F d(A,B) =
∥A− B∥F
∥B∥F
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Large m is needed for a good approximation. Inverses are converging faster.
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