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Background

• Morel and Neerchal (1991, 1993, 1998, 2005) studied estimation in their
multinomial model for overdispersion: “Random Clumped Multinomial”.

• They obtained a large cluster approximation to the Fisher Information
Matrix (FIM), and used it to formulate an Approximate Fisher Scoring
Algorithm (AFSA).

• Liu (2005, PhD Thesis) extended the idea to general mixtures of
multinomials, and found some interesting connections between AFSA
and Expectation Maximization (EM).

• This work extends Liu (2005), further investigating the quality of the
FIM approximation and the connection between AFSA and EM.
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Mixture of Multinomials Example

Example: Housing satisfaction survey

Non-metropolitan area Metropolitan area
Neighborhood US S VS Neighborhood US S VS

1 3 2 0 19 0 4 1
2 3 2 0 20 0 5 1
3 0 5 0 21 0 3 2
...

...
17 4 1 0 35 4 1 0
18 5 0 0

With labels, a reasonable likelihood is product of two multinomials

L(θ) =

[
18∏
i=1

f (xi | p1,m)

][
35∏

i=19

f (xi | p2,m)

]
, m = 5.

J. R. Wilson, Chi-Square Tests for Overdispersion with Multiparameter Estimates. Journal

of the Royal Statistical Society (Series C), 38(3):441–453, 1989.
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Mixture of Multinomials Example

Example: Housing satisfaction survey

??? ???
Neighborhood US S VS Neighborhood US S VS

1 3 2 0 19 0 4 1
2 3 2 0 20 0 5 1
3 0 5 0 21 0 3 2
...

...
17 4 1 0 35 4 1 0
18 5 0 0

Without labels, a reasonable likelihood is mixture of two multinomials

L(θ) =
35∏
i=1

{
πf (xi | p1,m) + (1− π)f (xi | p2,m)

}
, m = 5.

J. R. Wilson, Chi-Square Tests for Overdispersion with Multiparameter Estimates. Journal

of the Royal Statistical Society (Series C), 38(3):441–453, 1989.
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Mixture of Multinomials
• Suppose we have s multinomial populations

f (x | pℓ,m) =
m!

x1! . . . xk !
px1ℓ1 . . . p

xk
ℓk · I (x ∈ Ω), ℓ = 1, . . . , s

which occur in the total population with probabilities π1, . . . , πs .

• If we draw T from the mixed population,

T ∼ f (x | θ) =
s∑

ℓ=1

πℓf (x | pℓ,m), θ = (p1, . . . ,ps ,π)

We’ll write T ∼ MultMixk(θ,m).

. . .

Ball 1 Ball m

Bin 1 (p11) Bin 2 (p12) . . . Bin k (p1k) selected wp π1

...

Bin 1 (ps1) Bin 2 (ps2) . . . Bin k (psk) selected wp πs
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Estimation Problem
• Suppose our sample is Xi

ind∼ MultMixk(θ,mi ), i = 1, . . . , n

• Likelihood

L(θ) =
n∏

i=1

f (xi ;θ) =
n∏

i=1

{
s∑

ℓ=1

πℓ

[
mi !

xi1! . . . xik !
pxi1ℓ1 . . . pxikℓk · I (xi ∈ Ω)

]}

• To find MLE θ̂ = (p̂1, . . . , p̂s , π̂), which maximizes the (log) likelihood

• Some options
▶ No nice closed form
▶ Newton-Raphson, Fisher Scoring, Quasi-Newton methods

θ(g+1) = θ(g) − αH−1S(θ(g)), g = 1, 2, . . .

▶ Expectation Maximization (EM)

Score: S(θ) =
∂

∂θ
log L(θ)

FIM: I(θ) = E

{
− ∂2

∂θ∂θT
log L(θ)

}
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Fisher Scoring Algorithm
• The iterations become

θ(g+1) = θ(g) + I−1(θ(g))S(θ(g)), g = 1, 2, . . . ,

but I(θ) may not be easy to compute.

• Naive summation works when sample space Ω is small

I(θ) :=
∑
x∈Ω

{
− ∂2

∂θ∂θT
log f (x | θ)

}
f (x | θ).

• Monte Carlo approximation

• For large clusters (m ↑), Morel & Nagaraj (1991) and Liu (2005, PhD
thesis) propose an approximation (shown for X1 ∼ MultMixk(θ,m))

Ĩ(θ) := Blockdiag (π1F1, . . . , πsFs ,Fπ) ,

Fℓ = m
[
Diag(p−1

ℓ1 , . . . , p−1
ℓ,k−1) + p−1

ℓk 11T
]

Fπ = Diag(π−1
ℓ , . . . , π−1

s−1) + π−1
s 11T

• Result: Ĩ(θ)− I(θ) → 0 as m → ∞.
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Approximate FIM Properties I
• Ĩ(θ) is a block diagonal matrix of Multinomial FIMs.

▶ Simple forms for inverse, trace, and determinant

• Result: Ĩ(θ) is “complete data” FIM of (X,Z )

Z =


1 wp π1

...

s wp πs ,

and (X | Z = ℓ) ∼ Multk(pℓ,m).

So that we have

Ĩ(θ) = E

{
− ∂2

∂θ∂θT
log f (x, z | θ)

}
• Note that EM is based on maximizing

Q(θ,θ′) = Eθ′

[
log f (x, z | θ) | x

]
.
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Approximate FIM Properties II

• Can also show that the inverses converge

I−1(θ)− Ĩ−1(θ) → 0 as m → ∞.

• For any non-singular A,B, and sub-multiplicative matrix norm

B−1 − A−1 = A−1(A− B)B−1

=⇒ ∥A−1 − B−1∥ ≤ ∥A−1∥ · ∥A− B∥ · ∥B−1∥.

• Taking A = I(θ) and B = Ĩ(θ)

∥I−1(θ)− Ĩ−1(θ)∥ ≤ ∥I−1(θ)∥ · ∥I(θ)− Ĩ(θ)∥ · ∥Ĩ−1(θ)∥

which can be shown to converge to 0.

• I(θ) may be singular if identifiability fails to hold on the model.
▶ See Rothenberg (1971) about the connection.
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Approximate FIM Properties III

• Large cluster size (m) needed for

Ĩ(θ) ≈ I(θ) and Ĩ−1(θ) ≈ I−1(θ)

(with inverses apparently converging faster).

• Approximate FIM and inverse are not recommended for general
inference.

• But useful as a tool for estimation, as we will see.
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Approximate Fisher Scoring Algorithm

• Using the approximate FIM in place of the true FIM gives AFSA

θ(g+1) = θ(g) + Ĩ−1(θ(g))S(θ(g)), g = 1, 2, . . .

until
∣∣log L(θ(g+1))− log L(θ(g))

∣∣ < ε.

• Liu (2005, PhD Thesis) derives explicit iterations for each parameter in
θ for both EM and AFSA.

• Under X1, . . . ,Xn
iid∼ MultMixk(θ,m), EM and AFSA iterations are

“equivalent”, given the same starting place θ(g)

π̃
(g+1)
ℓ = π̂

(g+1)
ℓ , p̃

(g+1)
ℓj =

(
π̂
(g+1)
ℓ

π
(g)
ℓ

)
p̂
(g+1)
ℓj +

(
1−

π̂
(g+1)
ℓ

π
(g)
ℓ

)
p
(g)
ℓj .

• Doesn’t hold under the “independent but not iid” case.
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Equivalence of AFSA and EM
AFSA steps are linear combinations of the next EM step and the previous
iterate

π̃
(g+1)
ℓ = π̂

(g+1)
ℓ , p̃

(g+1)
ℓj =

(
π̂
(g+1)
ℓ

π
(g)
ℓ

)
p̂
(g+1)
ℓj +

(
1−

π̂
(g+1)
ℓ

π
(g)
ℓ

)
p
(g)
ℓj .

0 1

p
(g)
`j

p̂
(g+1)
`j

π̂
(g+1)
` /π

(g)
`

p̃
(g

+
1
)

`j

AFSA step compared to previous iterate and EM step

1

When EM is close to convergence, we will have p̃
(g+1)
ℓj ≈ p̂

(g+1)
ℓj .
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Equivalence of AFSA and EM II
• A more general connection is known between EM and iterations of the

form
θ(g+1) = θ(g) + I−1

c (θ(g))S(θ(g)), g = 1, 2, . . . .

• Titterington (1984) shows the two are approximately equivalent (under
regularity conditions)

• And the equivalence is exact when the complete data likelihood is a
regular exponential family

L(µ) = exp
{
b(x) + ηT t+ a(η)

}
,

η = η(µ) : natural parameter,

t = t(x) : sufficient statistic,

µ = E(t(X)) : the parameter of interest.

• For MultMix problem, equivalance is approximate not exact.
▶ Justification for AFSA originally came from Ĩ(θ) and Blischke (1964).
▶ But this result justifies AFSA for finite mixtures other than multinomial.
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Comparison between algorithms
Consider the mixture of two trinomials

Xi
iid∼ MultMix3(θ,m = 20), i = 1, . . . , n = 500(

pT
1

pT
2

)
=

(
1/3 1/3 1/3
0.1 0.3 0.6

)
,

(
π

1− π

)
=

(
0.75
0.25

)
.
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FSA
EM
FSA w/ warmup 1e−1

method ε0 tol iter

AFSA — 4.94 × 10−09 36
EM — 5.50 × 10−09 36
FSA ∞ −1.26 × 10−07 100
FSA 10 4.46 × 10−10 16
FSA 1 1.34 × 10−10 20
FSA 0.1 7.84 × 10−10 22
FSA 0.01 1.42 × 10−10 24
FSA 0.001 9.05 × 10−10 26

logLik achieved for exact FSA = -2423.864
logLik achieved for others = -2234.655

Hybrid approach: use AFSA to
warm up, then FSA to finish.



Monte Carlo Comparison of EM and AFSA
Consider a scenario with varying cluster sizes

Yi
ind∼ MultMixk(θ,mi ), i = 1, . . . , n = 500, π = (0.75, 0.25)

W1, . . . ,Wn
iid∼ Gamma(α, β), mi = ⌈Wi⌉.

Ran 1000 reps of nine scenarios and looked at the quantity

1

1000

1000∑
r=1

{
q∨

j=1

∣∣∣∣∣ θ̃
(r)
j − θ̂

(r)
j

θ̃
(r)
j

∣∣∣∣∣
}
.

(kth probability not shown) mi equal α = 100 α = 25
p1 p2 mi = 20 Var(mi ) ≈ 4.083 Var(mi ) ≈ 16.083(

0.1
) (

0.5
)

2.178× 10−6 2.019× 10−6 2.080× 10−6(
0.3

) (
0.5

)
4.073× 10−5 3.501× 10−5 3.890× 10−5(

0.35
) (

0.5
)

8.683× 10−4 2.625× 10−4 2.738× 10−4(
0.4

) (
0.5

)
9.954× 10−3 6.206× 10−2 6.563× 10−2(

0.1, 0.3
) (

1/3, 1/3
)

1.342× 10−3 1.009× 10−3 1.878× 10−3(
0.1, 0.5

) (
1/3, 1/3

)
1.408× 10−6 1.338× 10−6 1.334× 10−6(

0.3, 0.5
) (

1/3, 1/3
)

3.884× 10−6 3.943× 10−6 3.885× 10−6(
0.1, 0.1, 0.3

) (
0.25, 0.25, 0.25

)
8.389× 10−7 8.251× 10−7 8.440× 10−7(

0.1, 0.2, 0.3
) (

0.25, 0.25, 0.25
)

1.523× 10−6 1.472× 10−6 1.408× 10−6
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Conclusions

AFSA is obtained as a Newton-type algorithm using an approximate FIM.

• Nearly equivalent to EM iterations — similar solutions are obtained at
similar rates of convergence

• (EM advantange) M-step can be formulated so it won’t wander
outside parameter space.

• (AFSA advantange) May be easier to formulate when missing data
structure is complicated.
E.g. Random-Clumped Multinomial (Morel & Neerchal 1993).

Result of Titterington (1984) suggests AFSA approach is reasonable for
finite mixtures in general.

Both EM and AFSA suffer from a slow convergence rate.

• Hybrid is recommended for fast convergence and robustness.
• . . . if true FIM is feasible to compute.
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How good is the FIM approximation?
Consider a mixture MultMix2(θ,m) of three binomials, with parameters(

p1 p2 p3
)
=

(
1/7 1/3 2/3

)
, π =

(
1/6 2/6 3/6

)
,

and two matrix distances

d(A,B) = ∥A− B∥F d(A,B) =
∥A− B∥F
∥B∥F
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Large m is needed for a good approximation. Inverses are converging faster.
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