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• We present an analysis of injury data which was first explored by Fleming (2012).
Fleming’s analysis focuses on injury counts of individuals, and the issue of estimating
the (unobserved) number of individuals having zero counts using truncated Poisson.

• Counts of several common injury types are analyzed in a multinomial setting. Finite
mixture of multinomial models are considered to address heterogeneity in the data.

• Computational techniques from Raim et al. (2013) are used to determine the number
of mixing components, obtain estimates, and compute standard errors and confidence
intervals. We find that three latent classes provides an adequate model.

Summary

• Data consists of injuries reported to a national database maintained by an ambulance
service company.

• Records are associated with emergency service providers such as EMTs, paramedics,
and firefighters, along with adjunct workers such as administrators.

• 6,691 total injuries in 4,623 unique people. Individuals are grouped into 450 distinct
ambulance units.

• 600 different occupations are listed, many with small subtle differences between them
e.g. EMT, PARAMEDIC, EMT FIREFIGHTER, FIREFIGHTER

• 55 types of injuries are reported, from nausea, to seizure, to death. We focus on the
k = 10 most common: strain, contusion, sprain, puncture, laceration, torn carti-
lage/ligament/tendon (C/L/T), fracture, inflammation, respiratory, and other
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Ti1 ← # strains
Ti2 ← # contusions

.

.

.
Tik ← # other injuries
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out of mi injuries for the ith ambulance unit
for i = 1, . . . , n = 450.

Injury Dataset

• Injuries in same ambulance unit may have similar conditions: e.g. weather and crime.

• But heterogeniety is expected
X Between different occupations — e.g firefighter vs. office worker
X Between individuals — carefulness, pre-existing medical conditions, etc.

• Therefore, consider finite mixture for analysis: Ti
ind∼ MultMixk(θ,mi)
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, with θ = (p1, . . . ,ps,π)

• Several covariates are available, such as gender and amount of lost wages due to injury,
but these are not used in the analysis.
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• As usual under finite mixture distributions, closed form expressions for the MLE θ̂ are
not available, and iterative techniques must be used to compute estimates.

• A standard iterative estimation method is Fisher scoring

θ
(g+1)

= θ
(g)

+ I−1
(θ

(g)
)S(θ

(g)
), g = 1, 2, . . .

S(θ) =
∂

∂θ
logL(θ) is score vector wrt the sample

I(θ) = E
[
S(θ)S(θ)

T
]

is Fisher information matrix (FIM) wrt the sample

• Let Im(θ) be FIM for MultMixk(θ,m). Then I(θ) = Im1
(θ) + · · ·+ Imn

(θ).

• Simple expressions for Im(θ) are also not available. We can use definition of expec-
tation

Im(θ) =
∑
t∈Ω

{
∂

∂θ
log f(t;θ,m)

}{
∂

∂θ
log f(t;θ,m)

}T
f(t;θ,m) (∗)

but number of terms
(
m+k−1

m

)
grows quickly with m (or k).

• Raim et al. (2013) justify the following matrix as a large cluster approximation (as
m → ∞) to Im(θ), as well as its use in Fisher scoring iterations (“approximate
Fisher scoring”)

Ĩm(θ) = Blockdiag (π1F1, . . . , πsFs,Fπ) ,where
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[
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−1
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−1
`k 11

T
]
, ` = 1, . . . , s,

Fπ = diag(π
−1
1 , . . . , π

−1
s−1) + π

−1
s 11

T
.

• Can be shown that Ĩm(θ)−Im(θ)→ 0 and I−1
m (θ)−Ĩ−1

m (θ)→ 0 asm→∞,
and that approximate Fisher scoring is “close” to Expectation-Maximization.

Approximate Information Matrix and Scoring

• To select the # of mixture components s supported by the data, consider the informa-
tion criteria

AIC = −2 logL(θ̃) + 2q and BIC = −2 logL(θ̃) + q logn.

where q = sk − 1 is the total number of parameters.

• The approximate Fisher scoring estimator θ̃ is used because exact Fisher scoring (using
(∗)) is intractible for this data.
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s AIC BIC
1 13977.69 14014.68
2 6389.88 6467.96
3 6288.35 6407.52
4 6271.77 6432.03
5 6267.17 6468.53
6 6254.95 6497.40
7 6262.40 6545.94
8 6266.63 6591.26
9 6270.66 6636.39

10 6317.28 6724.10

• s = 3 is selected because it provides a reasonably simple model, and at least minimizes
one of the criteria (BIC)

Model Selection

• Standard errors can be obtained from approximate Fisher scoring using the diagonal
elements of Ĩ−1(θ̃). But it can be shown that they are systematically too small (i.e.
too optimistic).

• It is natural to consider an improved approximation using the exact FIM for smaller mi
and the approximate FIM for larger mi. Define the “hybrid approximate FIM” as

I∗(θ, C) =
∑

i:mi≤C

Imi
(θ) +

∑
i:mi>C

Ĩmi
(θ).

• We would like to find C ≥ 0 to yield small values for

NC,k =
∑

i:ri>C

(ri + k − 1

ri

)
, the # of terms in the summation (∗)

pC =
‖I∗(θ̃, C) − I(θ̃)‖

‖Ĩ(θ̃) − I(θ̃)‖
and qC =

‖I∗−1(θ̃, C) − I−1(θ̃)‖

‖Ĩ−1(θ̃) − I−1(θ̃)‖

where r1, . . . , rn∗ represent unique mi .
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• C = 50 (shown above right) is a good choice using only k = 4 categories, but too expensive to compute
for all k = 10 categories. We proceed with C = 20 for the final analysis.

Improvement to FIM Approximation

• Results after running one additional Fisher scoring step with I∗(θ̃, C = 20)

• Class for ith observation assigned according to: argmax`
π̂`f(ti;p̂`,mi)∑s
a=1

π̂af(ti;p̂a,mi)
.

Estimate (Stderr) Class 1 Class 2 Class 3
Pr[Mixing] 0.5347 (0.0412) 0.3962 (0.0399) —
Pr[Strain] 0.4783 (0.0089) 0.2940 (0.0097) 0.3363 (0.0247)
Pr[Contusion] 0.1025 (0.0053) 0.0743 (0.0055) 0.1310 (0.0174)
Pr[Sprain] 0.0981 (0.0052) 0.0598 (0.0050) 0.0422 (0.0106)
Pr[Puncture] 0.0343 (0.0033) 0.0624 (0.0050) 0.0550 (0.0118)
Pr[Torn C/L/T] 0.0349 (0.0033) 0.0588 (0.0048) 0.0394 (0.0101)
Pr[Laceration] 0.0144 (0.0021) 0.0178 (0.0027) 0.0333 (0.0092)
Pr[Fracture] 0.0105 (0.0019) 0.0298 (0.0035) 0.0109 (0.0054)
Pr[Inflammation] 0.0115 (0.0019) 0.0128 (0.0024) 0.0500 (0.0110)
Pr[Respiratory] 0.0088 (0.0017) 0.0059 (0.0017) 0.0879 (0.0144)
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• Class 1 had 47.92% females, while class 2 had 48.26% and class 3 had 30.77%.

• See Raim et al. (2012) for the complete study.

Results


