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• Rejection sampling is a classical algorithm to generate exact draws from
a target distribution (von Neumann, 1951). When presented with a new
target, it may be nontrivial to formulate a rejection sampler that achieves
a good enough acceptance rate to be practically useful.

• We present a method for weighted target densities which operates by ma-
jorizing the weight function. This creates a natural envelope for rejection
sampling, and does not necessarily require properties such as log-concavity.

• This presentation focuses on univariate targets which partition the support
into intervals. The partition can be adapted to reduce rejection rates.

• Some related work is discussed on the last page.

Summary

Objective: Generate draws from the weighted target density

f(x) = f0(x)/ψ, f0(x) = w(x)g(x), ψ =

∫
Ω

w(x)g(x)dν(x), where

1. Ω is the support of f ,
2. w(x) ≥ 0 is a weight function,
3. g(x) is the “base distribution”, a density function with Ω ⊆ supp g,
4. ψ is a normalizing constant which may not have a convenient form,
5. ν is a dominating measure.

Target Density

• Partition Ω into N disjoint regions D1, . . . ,DN and suppose wj =
maxx∈Dj

w(x) and wj = minx∈Dj
w(x) for each region j = 1, . . . , N .

• This suggests an (unnormalized) density as the proposal:

h0(x) =


w1g(x) if x ∈ D1,

...

wNg(x) if x ∈ DN ,

=⇒ f0(x) ≤ h0(x).

• Normalizing yields a finite mixture of truncated densities

h(x) =
N∑

j=1

πjgj(x), πj = ξj

/ N∑
ℓ=1

ξℓ, ξj = wj P(T ∈ Dj),

gj(x) = g(x) I(x ∈ Dj)
/
P(T ∈ Dj), T ∼ g.

Proposal Distribution

We consider a standard rejection sampling algorithm with h as the proposal.

1. Draw u from Uniform(0, 1).
2. Draw x from proposal h.
3. If u ≤ f0(x)/h0(x), accept x as a draw from f ; otherwise return to

Step 1.

Some properties of the sampler.

• The probability of rejecting each proposed draw is 1− ψ/a, where ψ and
a =

∑N
j=1 ξj are normalizing constants for f0 and h0, respectively.

• A useful upper bound for the probability of rejection is

1− ψ/a ≤ 1

ψ

N∑
j=1

volj , volj = (wj − wj) P(T ∈ Dj).

• We will refer to volj as the “volume” for the jth region, and
∑N

j=1 volj as
the volume for the proposal. An efficient proposal will have small volumes
without N too large.

Rejection Sampling

Draws from h can be obtained from the finite mixture form:

1. Draw index j from 1, . . . , N with probabilities π1, . . . , πN .
2. Draw x from the distribution g truncated to Dj .

Step 2 is straightforward for the univariate distributions in this presentation.

• Suppose regions are intervals of the form Dj = (αj−1, αj ].
• Let u be a draw from Uniform(αj−1, αj).
• Let G and G− be the cumulative distribution and quantile functions

for the base distribution.
• Draw x is taken to be G−(

{G(αj)−G(αj−1)}u+G(αj−1)
)
.

Drawing from Proposal

• We decompose Ω into D1, . . . ,DN before sampling, with N prescpecified.

• Select the next region j to split with probability proportional to their
volumes; then bifrucate region j at its midpoint.

• Special handling is needed for intervals where one or both limits are infinite
(to find a suitable bifrucation point), or where support is discrete (so that
each region contains at least one support point).

Adapting the Proposal

• All computations are done in R (R Core Team, 2023).

• Calculations are kept on the log-scale, as much as possible, to accommo-
date numbers with very large and very small magnitudes.

• For example, Step 1 of “Drawing from Proposal” is carried out on the un-
normalized log-probabilities log ξ1, . . . , log ξN using the Gumbel softmax
trick (e.g., Maddison et al., 2014).

• Numerical optimization of w(x) is used on each Dj to obtain wj and wj .

Computational Details

• Consider drawing from the polynomial-normal distribution

f0(x) =
1√
2π

exp{−x2/2}︸ ︷︷ ︸
g(x)

·
m∏
ℓ=1

(x− λℓ)(x− λ̄ℓ)︸ ︷︷ ︸
w(x)

, x ∈ R,

from Evans and Swartz (1998), where w(x) is a non-negative polynomial
of degree 2m, each λℓ is a root, and λ̄ℓ is its complex conjugate.

• Let m = 2 with λ1 = 1 + 0.5i and λ2 = −3 + 0.5i, and suppose knots
(α1, . . . , αN−1) are taken to be −4.5, −3.5, −2.5, −1.5, 0, 1.5, and 2.5.

• Figure 1 displays w(x) (solid black) and the associated wj(x) and wj(x)
(top and bottom of the blue rectangle, respectively) for the proposal. Solid
blue lines are knot locations.

• Figure 2 displays f0(x) (solid black) and the proposal h0(x) (dashed blue).
Volumes of each region are displayed at the top.
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A First Example
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• The Conway-Maxwell Poisson (CMP) distribution has become popular for
modeling count data which may exhibit over- and/or underdispersion.

• The monograph by Sellers (2023) gives an overview of CMP and a number
of recent developments. The R package COMPoissonReg (Raim and Sell-
ers, 2022) implements basic CMP distribution functions and regression.

• A random variable X with distribution CMP(λ, ν) has probability mass
function (pmf)

f(x) =
λx

(x!)νZ(λ, ν)
, x = 0, 1, 2, . . . , Z(λ, ν) =

∞∑
x=0

λx

(x!)ν

where λ ≥ 0 and ν ≥ 0.

• The CMP(λ, ν) family includes some cases of interest.

1. When ν = 1, it corresponds to Poisson(λ). Here variance and mean
are both λ.

2. When ν < 1, it becomes overdispersed so that the variance is
larger than the mean. At the extreme ν = 0, it corresponds to
Geometric(1− λ).

3. When ν > 1, it becomes underdispersed so that the variance is
smaller than the mean. As ν → ∞, it becomes Bernoulli(λ/(1+λ)).

Conway-Maxwell Poisson Distribution

• Generating variates from CMP is non-trivial because the magnitude of
Z(λ, ν) can vary wildly with λ and ν. The mass of the distribution can
shift accordingly.

• For example, let λ = 2. If ν = 1, then Z(λ, ν) = e2 and E(X) = 2.
However, if ν = 0.05, Z(λ, ν) ≈ exp(52,437.76) and E(X) = 1,048,585.

• The variate generating function rcmp in COMPoissonReg works by either:
(1) truncating the series Z(λ, ν) to within a small tolerance, or (2) using
an asymptotic approximation.

• Chanialidis et al. (2018) and Benson and Friel (2021) develop custom
rejection sampling algorithms to generate exact CMP draws; they are
used to implement the exchange algorithm for Bayesian analysis of CMP
parameters.

• Raim (2023) uses the same decomposition that we now present to for-
mulate an efficient rejection sampler, but the present method is easier to
implement.

Sampling

• For the case ν ≥ 1, let g be the pmf of Geometric(1/{1 + λ}) so that

f(x) ∝ λx

(x!)ν
=

(
λ

1 + λ

)x
1

1 + λ︸ ︷︷ ︸
g(x)

(1 + λ)x+1 λx

(x!)ν︸ ︷︷ ︸
w(x)

.

• For λ = 10 and ν = 1.2, a sampler with N = 21 regions rejected 5
proposed draws to obtain 100,000 variates (rejection rate 0.005%).

• Figure 3 shows reduction in the log of total volume
∑N

j=1 volj . Figure 4
displays proportions of draws (bars) versus density values (points).
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Underdispersion Case

• For ν < 1, Geometric(1/{1 + λ}) may be an inefficient base because its
mass can be practically disjoint from CMP(λ, ν).

• Here let µ = λ1/ν and

f(x) ∝ µνx

(x!)ν
=

(
µ

1 + µ

)x
1

1 + µ︸ ︷︷ ︸
g(x)

(1 + µ)x+1µ
x(ν−1)

(x!)ν︸ ︷︷ ︸
w(x)

.

• For λ = 1.5 and ν = 0.05, a sampler with N = 101 regions rejected 2,922
proposed draws to obtain 100,000 variates (rejection rate 2.84%).

• Figure 6: empirical density of draws (solid black) with pmf (red dashed).
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Overdispersion Case

A brief study of acceptance % was carried out with R = 100,000,

• λ ∈ {0.25, 0.5, 0.75, 1, 1.25, 2, 5, 10},
• ν ∈ {0.01, 0.05, 0.5, 1, 1.5, 5, 10},
• where λ1/ν ≤ 50, 000.
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Figure 7: N = 10.
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Acceptance Rates (%)
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• A random variable V with von Mises Fisher distribution VMFd(µ, κ) is
on the d-dimensional sphere Sd = {v ∈ Rd : v⊤v = 1} and has density

fVMF(v) =
κd/2−1

(2π)−d/2Id/2−1(κ)
exp(κ ·µ⊤v) · I(v ∈ Sd),

where parameters κ > 0 and µ ∈ Sd determine concentration and modal
direction, respectively, and Iν(x) =

∑∞
m=0{m!·Γ(m+ν+1)}−1(x2 )

2m+ν

is modified Bessel function of the first kind.

• A draw from VMFd(µ, κ) with µ = (1, 0, . . . , 0) can be obtained as

V0 =
(√

1−X2 ·U , X)
)
, (Ulrich, 1984),

where U ∼ Uniform(Sd−1) and X has density

f(x) =
(κ/2)d/2−1(1− x2)(d−3)/2 exp(κx)√

π · Id/2−1(κ) · Γ((d− 1)/2)
· I(−1 < x < 1).

• Transform to V ∼ VMFd(µ, κ), for any desired µ, using V = QV0 with
Q an orthonormal matrix whose first column is µ.

• A draw of U can be obtained as Z/
√
Z⊤Z with Z ∼ N(0, Id−1)

(Muller, 1959); therefore, drawing V reduces to univariate generation
of X.

von Mises Fisher Distribution

• To apply our proposed rejection sampler, consider the decomposition

f(x) ∝ 2(1− x2)(d−3)/2 exp(κx)︸ ︷︷ ︸
w(x)

· 1
2
I(−1 < x < 1)︸ ︷︷ ︸

g(x)

so that g is the density of Uniform(−1, 1).

Our Rejection Sampler

• Consider the setting d = 3, κ = 10, and µ = (1, 0, . . . , 0).

• To sample X, Figure 9 shows reduction in log-volume after adapting to
N = 101 regions.

• To obtain R = 50, 000 draws of X, 1,393 proposed draws were rejected
(rejection rate: 2.71%).

• Figure 10 compares the empirical CDF of the X draws (solid black) to
the sCDF of X (dashed red) computed by numerical integration of f(x).

• The R draws of X were used to construct R draws of V . Figure 12
displays these draws projected to two dimensions from the perspective of
µ. Yellow bins indicate higher counts and blue bins indicate lower counts.

• Figure 11 shows the VMF3(µ, κ) density in three dimensions.
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Example

• Ulrich (1984) and Wood (1994) develop a custom rejection sampler for
X. It is still used in a number of software packages, including movMF
(Hornik and Grün, 2014) and Rfast (Tsagris and Papadakis, 2018).

• Proposal is random variable X0 = [1 − (1 + b)Z]/[1 − (1 − b)Z] where
Z ∼ Beta((d− 1)/2, (d− 1)/2) and b is fixed; density is

f0(x | b) = 2 · b(d−1)/2(1− x2)(d−3)/2

B(d−1
2 , d−1

2 ) · [(1 + b)− (1− b)x]d−1
, x ∈ (−1, 1). (1)

• To obtain the smallest M such that f(x)/{Mf0(x | b)} ≤ 1 for all
x ∈ (−1, 1):

x∗ =
1− b∗
1 + b∗

, b∗ =
−2κ+

√
4κ2 + (d− 1)2

d− 1
.

• The algorithm proceeds with c = κx∗ + (d− 1) log(1− x2∗):

1. Draw x from proposal (1) and u from Uniform(0, 1).

2. Accept x as a draw from the target if log u < κx+ (d− 1) log(1−
x · x∗)− c; otherwise reject x and return to step 1.

Ulrich & Wood’s (UW) Sampler

• The table below presents a small study comparing rejection rates (as per-
centages) from the UW sampler with ours. Displayed is percent of rejected
proposals to obtain 50,000 draws.

• The UW sampler rejects more frequently as κ is increased and d is small.
It is very fast in practice but developing it involved a clever transformation.

• Rejection rates for our sampler reduce slowly with N in some cases. E.g.,
when d = 2, w(x) is a bowl-shaped function with steep sides. A different
choice of majorization than constants wj may be more effective here.

UW Sampler

d 0.1 0.5 1 5 κ = 10

2 0.28 4.99 13.33 30.31 32.39
3 0.10 1.92 6.11 24.82 28.80
4 0.04 0.99 3.45 21.03 26.02
5 0.03 0.56 2.26 17.72 23.86

10 0.01 0.14 0.56 8.40 16.40
20 0.00 0.05 0.13 2.84 8.10
50 0.00 0.01 0.02 0.45 1.84

Our Sampler (N = 100)

0.1 0.5 1 5 10

6.21 8.09 8.19 7.10 6.81
0.16 0.65 1.30 2.52 2.66
1.04 1.11 1.44 2.47 2.46
1.52 1.56 1.73 2.42 2.72
2.52 2.32 2.32 2.64 2.74
2.87 2.53 2.69 2.61 2.81
2.87 3.06 2.71 2.96 2.96

Rejection Rates (%)
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• Suppose µ(·) : Rd → R is a function whose form may be unknown, and
(xi, yi), i = 1, . . . , n, are data where yi is a noisy observation of µ(xi).

• Consider the GP model

yi = µ(xi) + ϵi, ϵi ∼ N(0, σ2), i = 1, . . . , n,

µ ∼ GP(0, k(·, ·)), σ2 ∼ Gamma(aσ, bσ),

shape aσ, rate bσ, and covariance kernel k(x,x′) = exp{−1
2∥x−x′∥2}.

• Likelihood portion of the model in vector form is

y = µ(X) + ϵ, ϵ ∼ N(0, σ2I), µ(X) ∼ N
(
0, k(X,X)

)
.

Gaussian Process Regression

• Using the proposed rejection sampler, we can draw exactly from the pos-
terior distribution [σ2 | y] without MCMC.

• Let UΛU⊤ be the spectral decomposition of k(X,X) with Λ =
Diag(λ1, . . . , λn).

• Using σ2I + k(X,X) = U [σ2I + Λ]U⊤, we can transform the
marginal likelihood of y ∼ N(0, σ2I + k(X,X)) to z = U⊤y where

zi
iid∼ N(0, σ2 + λi).

• Let weight function be the unnormalized posterior with respect to z:

logw(σ2) = −1

2

n∑
i=1

log(σ2 + λi)−
1

2

n∑
i=1

z2i
σ2 + λi

+ (aσ − 1) log σ2 − bσσ
2. (2)

• We take base distribution g as the density of Uniform(0, 1000).

• Form (2) avoids repeating large matrix operations in the sampler, though
these may be needed to initially obtain U and Λ.

• This sampler can be used with other priors on σ2 and other covariance
kernels with fixed hyperparameters.

Rejection Sampler

• We can sample from the posterior predictive distribution for (potentially
new) inputs X0 = (x01 · · · x0n0)

⊤.

1. Draw σ2(r), r = 1, . . . , R, from posterior (2).

2. Draw µ(X0) from [µ(X0) | y, σ2] for each σ2 = σ2(r).

• The distribution [µ(X0) | σ2,y] can be obtained from

[y, µ(X0) | σ2] ∼ N

([
0
0

]
,

[
σ2I + k(X,X) k(X,X0)
k(X0,X) k(X0,X0)

])
as N(µ0,Σ0), where

µ0 = k(X0,X)[k(X,X) + σ2I]−1y,

Σ0 = k(X0,X0)− k(X0,X)[k(X,X) + σ2I]−1k(X,X0).

Prediction

• To learn about the sinc function µ(x) = sin(πx)/{πx}, we observe n = 25

outcomes yi = µ(xi) + ϵi with ϵi
iid∼ N(0, 0.12), xi on an evenly spaced

grid in [−6, 6]. Let aσ = 2 and bσ = 1/2.

• Figure 15 shows the observed data and µ(x).

• Figure 13 shows decrease in log-volume of the rejection sampler over 100
adapt steps. With N = 101 regions, 1,502 proposed draws were rejected
to obtain R = 50, 000 (rejection rate 2.92%)

• Figure 14 compares the empirical distribution of draws from rejection sam-
pler (solid blue) to R draws computed via Stan (Carpenter et al., 2017)
with NUTS (dashed black).

• Figure 16 displays posterior predictive mean of µ(x) (blue curve), for x on
a fine grid on [−6, 6], and associated 95% pointwise interval from 0.025
and 0.975 quantiles (blue shaded area).
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Example (cont’d)

• The spatial linear regression model presented in Chapter 6 of Banerjee
et al. (2015) is an application of the GP.

• Suppose xi are locations on a spatial domain with fixed covariate s(xi) ∈
Rm and observation yi, i = 1, . . . , n, and

yi = s(xi)
⊤β + ζ(xi) + ϵi, ϵi

iid∼ N(0, σ2),

ζ ∼ GP(0, k(·, ·)), β ∼ N(0, σ2
βI), σ2 ∼ Gamma(aσ, bσ).

• With kernel k(·, ·) completely specified, we can draw from the exact pos-
terior using the proposed rejection sampler.

• Marginally, [y | σ2] ∼ N(0, σ2I + σ2
βSS⊤ + k(X,X)), where S is a

matrix with s(xi) as the ith row.

• Let UΛU⊤ be the spectral decomposition of σ2
βSS⊤ + k(X,X), and

consider the posterior with respect to data z = U⊤y where zi
iid∼

N(0, σ2 + λi) as before.

• Draws of β can be recovered from [β | σ2,y] ∝ [y | β, σ2] · [β] using
conjugacy of N(y | Sβ, σ2I + k(X,X)) and N(β | 0, σ2

βI).

• Draws of ζ(X0) from posterior predictive distribution [ζ(X0) | y] may
be obtained using [ζ(X0) | β, σ2,y] ≡ N(µ0,Σ0),

µ0 = k(X0,X)[k(X,X) + σ2I]−1(y −Sβ),

Σ0 = k(X0,X0)− k(X0,X)[k(X,X) + σ2I]−1k(X,X0).

• The R package spBayes (Finley et al., 2007) considers a fully conjugate
variation of this model with σ2 fixed. Also, full Bayesian treatments of
more general variants with MCMC via Metropolis-Hastings.

Spatial Regression
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• The approach in this work—a finite mixture proposal based on disjoint
regions—is a vertical strip method, which is discussed in Devroye (1986,
Chapters II and VIII) and Martino et al. (2018, Chapter 3). Martino et al.
refer to this as “Ahrens method”.

• A weighted density form presents an opportunity for improved efficiency
with vertical strips. Evaluating and drawing from the reweighted proposal
can be more involved, but is tractable in the presented examples.

• Raim (2023) uses some of these ideas to implement a hybrid of the direct
sampling method of Walker et al. (2011) and rejection sampling. The
present method is more straightforward and easier to implement.

• Adaptive rejection sampling methods build an envelope using rejected
draws Martino et al. (2018, Chapter 7).

1. The ARS algorithm produces independent draws but requires the
target to be log-concave.

2. Adaptive Rejection Metropolis Sampling (ARMS) removes the log-
concave restriction; however, it produces a chain of non-independent
draws and proposal is not guaranteed to converge to the target as
rejections increase.

3. The Independent Doubly Adaptive Rejection Metropolis Sampling
(IA2RMS) algorithm addresses the ARMS convergence issue which
also reduces dependence.

Additional Notes
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