
Maximum Likelihood Estimation of
Multinomial Mixture Models using High

Performance Computing

Andrew M. Raim
Advisor: Nagaraj K. Neerchal

Department of Mathematics and Statistics
University of Maryland, Baltimore County

Baltimore, MD, USA

39th Annual Meeting of the Statistical Society of Canada
June 12–15 at Acadia University, Wolfville, NS

Overview

• Parallel computing is starting to become mainstream in statistical
applications

• Many important applications are considered embarrassingly parallel
▶ Can be easily decomposed into smaller problems that have little

dependence on each other
▶ For example: Monte Carlo simulations, Bootstrap, parameter studies

• One popular tool is the SNOW package for R (“Simple Network of
Workstations”)
▶ Easy to handle embarrassingly parallel problems with functions like

parApply and clusterCall

• What about computations which aren’t embarrassingly parallel?
▶ We consider the MLE problem for mixtures of multinomials
▶ We’ll show that Fisher Scoring iterations can be effectively parallelized

on an HPC cluster, for large enough problems

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC 2/18

Mixture of multinomials
• Suppose we have s multinomial populations

f (x | p1,m), . . . , f (x | ps ,m)

where the ℓth population has density

f (x | pℓ,m) =
m!

x1! . . . xk !
px1ℓ1 . . . p

xk
ℓk , x ∈ X

and pℓ = (pℓ1, . . . , pℓk) represents a discrete probability distribution on
the k categories

• If ℓth population occurs wp πℓ, and we draw Y from the mixed
population,

Y ∼ fθ(x) =
s∑

ℓ=1

πℓf (x | pℓ,m), x ∈ X , θ = (p1, . . . ,ps ,π)

This is a natural way to model mixed populations

• We’ll write Y ∼ MultMix(P,π,m), where P = (p1 . . . ps) : k × s

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Background 3/18

Mixture of multinomials

Example: Housing satisfaction survey from J. R. Wilson (1989)

Non-metropolitan area Metropolitan area
Neighborhood US S VS Neighborhood US S VS

1 3 2 0 1 0 4 1
2 3 2 0 2 0 5 1
3 0 5 0 3 0 3 2
...

...
17 4 1 0 17 4 1 0
18 5 0 0

With labels, a reasonable likelihood is product of two multinomials

L(θ) =

[
18∏
i=1

f (xi | p1,m)

][
17∏
i=1

f (xi | p2,m)

]
, m = 5

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Background 4/18

Mixture of multinomials

Example: Housing satisfaction survey from J. R. Wilson (1989)

??? ???
Neighborhood US S VS Neighborhood US S VS

1 3 2 0 19 0 4 1
2 3 2 0 20 0 5 1
3 0 5 0 21 0 3 2
...

...
17 4 1 0 35 4 1 0
18 5 0 0

Without labels, a reasonable likelihood is mixture of two multinomials

L(θ) =
35∏
i=1

{
πf (xi | p1,m) + (1− π)f (xi | p2,m)

}
, m = 5

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Background 4/18

Maximum Likelihood Estimation for MultMix

• Consider computation of the MLE for the mixture of multinomials

• Given a sample Y1, . . . ,Yn
iid∼ MultMix(P,π,m), to find P̂ and π̂ which

maximize the likelihood

L(θ) =
n∏

i=1

s∑
ℓ=1

πℓ

{
m!

yi1! . . . yik !
pyi1ℓ1 . . . pyikℓk

}

• Can’t maximize in closed form, so we turn to numerical methods. Some
options:
▶ Direct numerical maximization (e.g. optim in R)
▶ Expectation Maximization (EM)
▶ Newton-Raphson type iterations, e.g. Fisher Scoring

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC MLE Computation in parallel 5/18

Fisher Scoring
Fisher Scoring Algorithm (FSA)

θ(t+1) = θ(t) + I−1(θ(t)) u(θ(t);Y), t = 0, 1, . . .

where

1. u(θ;Y) = ∂
∂θ log L(θ;Y) is the score vector

2. I−1(θ) is the inverse Fisher Information Matrix (IFIM) for the sample
3. θ(t), t = 0, 1, . . . is the estimate after iteration t

Problem: The MultMix FIM does not have a simple form
• We can compute it naively

I(θ) := E

[{
∂

∂θ
log fθ(x)

}{
∂

∂θ
log fθ(x)

}T
]

=
∑
x∈X

{
∂

∂θ
log fθ(x)

}{
∂

∂θ
log fθ(x)

}T

fθ(x)

• Then take the inverse
• But this quickly becomes impractical as m and k are increased

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC MLE Computation in parallel 6/18

Approximate FIM

• Morel & Nagaraj (1993) and Liu’s (2005, PhD thesis) approximate FIM

Ĩ(θ) :=

π1F1 0

. . .

πsFs

0 Fπ

 (sk − 1)× (sk − 1)

Fℓ = m
[
diag(p−1

ℓ1 , . . . , p−1
ℓ,k−1)− p−1

ℓk 11T
]

(k − 1)× (k − 1)

Fπ = diag(π−1
1 , . . . , π−1

s−1)− π−1
s 11T (s − 1)× (s − 1)

• Simple block-diagonal form, requires little computation to construct
▶ Simple forms for the inverse and determinant
▶ Note that Fℓ is FIM of standard multinomial

• Theorem: Ĩ(θ)− I(θ)→ 0 as m→∞, for multinomial mixtures
▶ Convergence rate is exponential for each matrix element

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC MLE Computation in parallel 7/18

Approximate Fisher Scoring

• Liu (2005) suggests using Ĩ(θ) in place of I(θ) for FSA
▶ Resulting algorithm is called Approximate Fisher Scoring (AFSA)
▶ AFSA works well when FSA becomes intractable

• AFSA iteration

θ(new) = θ + Ĩ−1(θ) u(θ;Y)

=

θ1
...
θs
θπ

+

π−1
1 F−1

1 0
. . .

π−1
s F−1

s

0 F−1
π

u1(θ)

...
us(θ)
uπ(θ)

• Repeat until convergence

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC MLE Computation in parallel 8/18

Approximate FSA and Parallel Computing
• The block-diagonal structure suggests a way to do parallel computing

θ(new) =

θ1
...
θs
θπ

+

π−1
1 F−1

1 0
. . .

π−1
s F−1

s

0 F−1
π

u1(θ)

...
us(θ)
uπ(θ)

=

θ1 + π−1

1 F−1
1 u1(θ)

...

θs + π−1
s F−1

s us(θ)

θπ + F−1
π uπ(θ)

← process 1

...
← process s
← process s + 1

• Idea: Split the work this way every iteration, obtain θ(new), repeat. . .

• What information needs to be shared?
▶ The data Y, which stays constant
▶ The current guess θ, at each iteration

• Can parallelize if not block diagonal, but don’t get this decomposition

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC MLE Computation in parallel 9/18

Parallel Computing

• By relaxing the requirement for exact FIM, we have an opportunity for
parallel computing
▶ Can use # processes p ∈ {1, . . . , s + 1} for a mixture of s populations

• Question: Can we use this to benefit our computations of MLEs?
▶ To solve larger problems (s, k, n), in less time
▶ How large, for parallel computing / HPC to be worth the effort?

• tara @ High Performance Computing Facility, UMBC
▶ 86-node distributed-memory cluster set up in Fall 2009
▶ two quad-core Intel Nehalem processors (2.66 GHz, 8192 kB cache per

core) and 24 GB memory per node
▶ high performance InfiniBand interconnect

• We’ll consider plain R code and C++ w/ MPI
▶ Verification run
▶ Performance study

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC MLE Computation in parallel 10/18

Verification Run

Y1, . . . ,Yn
iid∼ MultMix(P,π,m),

P =

1/3 1/6
1/3 2/6
1/3 3/6

π =

(
2/3
1/3

)
m = 20

n = 100

0 5 10 15 20

0
5

10
15

20

First two components of Y_1, ..., Y_n

Y_i1

Y
_i

2
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Verification 11/18

Verification Run

Optim-R
run FSA-R AFSA-R EM-R (L-BFGS-B) AFSA-C++
iterations 23 90 89 18 90
elapsed (sec) 5.276 5.848 4.557 6.913 0.099

• All methods give the same result

P̂ =

0.3199 0.1683
0.3506 0.3017
0.3295 0.5300

 , π̂ =

(
0.6511
0.3489

)

• Initial guess θ̂(0) same for all methods, chosen at random

• Convergence criteria:
∣∣∣L(θ̂(t+1))− L(θ̂(t))

∣∣∣ < 1e-8

(except for Optim-R)

• FSA requires exact IFIM, only tractable for smaller sample spaces

• optim doesn’t perform well for larger (general) mixture problems

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Verification 12/18

Performance Runs
• To observe performance characteristics as problem sizes vary

P : k × s, π : s × 1

Y1, . . . ,Yn
iid∼ MultMix(P,π,m)

▶ Cluster size m = 20
▶ Number of components s ∈ {3, 7, 15, 31}
▶ Number of categories k ∈ {15, 31}
▶ Sample size n ∈ {102, 103, 104, 105}

• Consider the following MLE codes
▶ AFSA, serial R
▶ EM, serial R
▶ AFSA, C++ MPI

• Initial guess is random for each scenario, but same used for all codes

• Stop after 10 iterations
▶ To see computation performance, regardless of convergence

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Performance 13/18

Performance Results: Smaller scenarios

Scenario Serial R C++ MPI
s k n AFSA EM p = 1 p = 2 p = 4 p = 8
3 15 100 0.89 0.66 0.05 0.05 0.03 —

1,000 8.84 6.50 0.45 0.29 0.19 —
10,000 88.85 65.61 4.32 2.63 1.78 —

100,000 971.84 754.89 43.47 26.67 19.56 —

3 31 100 1.02 0.73 0.08 0.08 0.04 —
1,000 9.89 7.21 0.71 0.44 0.30 —

10,000 101.73 73.95 7.07 4.25 2.94 —
100,000 1025.87 745.39 71.13 42.33 29.44 —

7 15 100 1.69 1.07 0.17 0.11 0.08 0.04
1,000 16.59 10.75 1.56 0.90 0.59 0.41

10,000 166.27 117.57 15.34 8.98 5.74 4.23
100,000 1666.05 1089.84 158.31 88.70 56.98 42.08

7 31 100 1.94 1.25 0.26 0.17 0.11 0.07
1,000 19.70 12.72 2.57 1.48 0.92 0.69

10,000 194.03 124.91 25.36 14.62 9.23 6.86
100,000 1979.33 1465.97 247.14 145.47 92.35 67.85

Elapsed walltime in seconds

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Performance 14/18

Performance Results: Larger scenarios

Scenario C++ MPI
s k n p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

15 15 100 0.57 0.34 0.20 0.12 0.22 —
1,000 5.59 3.12 1.81 1.21 0.88 —

10,000 55.86 31.28 18.01 12.23 8.81 —
100,000 555.56 310.55 180.11 123.31 88.52 —

15 31 100 0.93 0.52 0.30 0.20 0.15 —
1,000 9.32 5.03 2.97 2.00 1.46 —

10,000 91.70 50.53 29.62 19.90 14.45 —
100,000 907.90 500.16 292.55 197.78 144.30 —

31 15 100 2.13 1.16 0.64 0.38 0.29 0.24
1,000 21.29 11.12 6.12 3.79 2.50 1.84

10,000 218.79 116.83 61.13 37.37 24.84 18.46
100,000 2241.50 1107.10 609.17 375.77 248.35 184.05

31 31 100 2.47 1.30 0.73 0.44 0.29 0.25
1,000 35.13 18.30 10.15 6.14 4.04 2.99

10,000 349.44 181.82 108.47 61.19 40.31 29.93
100,000 3473.05 1806.06 1003.13 613.12 403.84 299.76

Elapsed walltime in seconds

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Performance 15/18

Conclusions I

The parallelization scheme for AFSA can be effective
• But problem sizes need to be fairly large

1. Many mixing components
2. Lots of categories
3. Large sample size

• Then splitting the work within iterations is productive
• But larger problems also become more difficult in general
• Many iterations (>1,000) may be needed for convergence. Good initial
guesses can help

• Applications of these magnitudes do exist

A few computing options beyond plain R

• R w/ SNOW: speedup without too much effort, but maybe still slow
overall

• R w/ serial C++: a lot of effort, much faster, can use from within R
• C++ w/ MPI: most effort, best performance, use for biggest problems

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Performance 16/18

Conclusions II

This parallelization scheme is naturally geared toward large s and k

• The best scheme will depend on the application
• For repeated estimation, most efficient scheme will be “embarrassingly

parallel”

For special multinomial mixtures like the Random-Clumped model discussed
in Morel & Neerchal (1998), direct numerical optimization works well

• Procedures involving the gradient (with/without hessian) can be
effectively parallelized

• See Raim, Gobbert, Neerchal & Morel (submitted)
• But for general multinomial mixtures, approaches like EM and FSA

seem more effective than direct optimization

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Performance 17/18

References

[1] Minglei Liu. Estimation for Finite Mixture Multinomial Models. Phd thesis,
University of Maryland, Baltimore County, Department of Mathematics and
Statistics, 2005.

[2] J.G. Morel and N.K. Nagaraj. A finite mixture distribution for modelling
multinomial extra variation. Biometrika, 80:363–371, 1993.

[3] N.K. Neerchal and J.G. Morel. Large cluster results for two parametric
multinomial extra variation models. Journal of the American Statistical
Association, 93:1078–1087, 1998.

[4] A.M. Raim, M.K. Gobbert, N.K. Neerchal, and J.G. Morel. Maximum
likelihood estimation of the random-clumped multinomial model as prototype
problem for large-scale statistical computing. 2010. Submitted.

Acknowledgement: The computational resources used for this work were provided by the
High Performance Computing Facility at the University of Maryland, Baltimore County
(UMBC). See www.umbc.edu/hpcf for information on the facility and its uses. Andrew
additionally thanks the facility for financial support as an RA.

Andrew Raim (UMBC) MLEs for Multinomial Mixtures using HPC Simulation Studies::Performance 18/18

www.umbc.edu/hpcf

	Background
	MLE Computation in parallel
	Simulation Studies
	Verification
	Performance

