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Overview

• Overdispersion occurs when a given statistical model can not capture
the variability observed in the data. It is commonly encountered in the
analysis of categorical and count data.

• The Mixture Link Binomial distribution was proposed in Raim (2014,
Ph.D. Thesis) as a model for overdispersed binomial data.

• In this work, we extend the idea to continuous and count outcomes.

• Inference is carried out with Bayesian statistics using Gibbs and
Metropolis-Hastings samplers.
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Regression in a Heterogeneous Population

• Suppose there are J possible regression functions

xTβ(1), . . . , xTβ(J).

• Suppose Yi
ind∼ Bin(mi ,G (xTi β

(Zi ))), given a latent subpopulation label

Zi =


1 w.p. π1

...

J w.p. πJ .

where G is an inverse link function such as the Logistic(0, 1) CDF.

• The overall success probability of a single trial is

E (Y /m | x) =
J∑

j=1

πjG (xTβ(j)).
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Example

Yi
ind∼
{

Bin[50, µ1(xi )] w.p. π1 = 0.1,

Bin[50, µ2(xi )] w.p. π2 = 0.9,
i = 1, . . . , 200,

µ1(x) = G (1 + x), µ2(x) = G (0 + 0.1x), µ(x) = π1µ1(x) + π2µ2(x)
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Example
Logistic Regression

Mean SD 2.5% 50% 97.5%

β0 0.0818 0.0205 0.0421 0.0819 0.1198

β1 0.1194 0.0102 0.0997 0.1193 0.1398
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Randomized Quantile Residuals
• Dunn and Smyth (1996) propose randomized quantile residuals for

diagnostics on GLMs and other non-normal models.

• Interpretation is similar to OLS residuals on a standard normal scale.

• For yi independently drawn from a continuous distribution,

ri = Φ−1{F (yi | θ̂)}.

• For yi independently drawn from a discrete distribution,

ri = Φ−1{ui}, ui
ind∼ U(ai , bi ), ai = lim

ε↓0
F (yi − ε | θ̂), bi = F (yi | θ̂).

• A Bayesian version using draws θ(1), . . . ,θ(R) from posterior is

ri =
1

R

R∑
r=1

Φ−1{u(r)i }, where u
(r)
i

ind∼ U(a
(r)
i , b

(r)
i ),

a
(r)
i = lim

ε↓0
F (yi − ε | θ(r)), and b

(r)
i = F (yi | θ(r)).
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Example
Residuals from Binomial Regression
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Example
Residuals from Correct Model (Mixture of Logistic Regressions)
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Some Approaches for Overdispersion in GLMs

• Likelihoods which support overdispersion using latent random variables.

1. Beta-Binomial (Otake and Prentice, 1984) and Random-Clumped
Binomial (Morel and Nagaraj, 1993).

2. Negative-Binomial (Hilbe, 2011)
3. t-distribution (Liu and Rubin, 1995).

• Quasi-likelihood methods.

1. Dispersion multiplier (Agresti, 2002, §4.7).
2. Generalized Estimating Equations (Liang and Zeger, 1986).

• Generalized Linear Mixed Models (McCulloch, Searle, and Neuhaus,
2008).

• Finite mixtures of regressions (Frühwirth-Schnatter, 2006).

• (Bayesian) Generalized link function (Basu and Mukhopadhyay,
2000a,b).

• (Bayesian) Generalized exponential families (Dey and Ravishanker,
2000).
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Mixture Link Model
• Consider a random variable Y with density

f (y | θ) =
J∑

j=1

πjg(y | θj).

• Mixing proportions π = (π1, . . . , πJ) in SJ def
= {π ∈ [0,∞)J : 1Tπ = 1}.

• Densities g(y | θj) belong to a common family parameterized by
θj = (µj ,φj).

1. µj is expected value under g .
2. φj is remaining parameter of g .

• Overall expected value is E(Y ) =
∑J

j=1 πjµj = πTµ.

• Application may naturally restrict µj to a subset of R.
1. If y is an outcome of OLS then µj ∈ R.
2. If y is a count then µj ∈ [0,∞).
3. if y is Bernoulli or Binomial then µj ∈ [0, 1].

• Denote space of µj as M, so that µ = (µ1, . . . , µJ) ∈MJ .
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Mixture Link Model

• Suppose we observe a random sample Y1, . . . ,Yn with

Yi ∼ f (yi | θi ) =
J∑

j=1

πjg(yi | µij ,φij).

• Here, E(yi ) = πTµi where µi = (µi1, . . . , µiJ) ∈MJ .

• Suppose also that each Yi has a (fixed) predictor xi ∈ Rd .

• Let ϑi
def
= G (xTi β) denote an inverse-linked regression function of

interest.

• As in traditional GLM, we wish to link E(yi ) to ϑi .

• To do this, we will consider the set

A(ϑi ,π) = {µ ∈MJ : µTπ = ϑi}.

• If we restrict ourselves to µi ∈ A(ϑi ,π), then we enforce the link.

• Approach will be to take µi as a random effect in A(ϑi ,π).
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Mixture Link Model

• Once a distribution over A(ϑ,π) has been determined, we obtain the
density

f (yi | β,π,φi ) =

∫ J∑
j=1

πjg(yi | µij ,φij) · fA(i)(µi )dµi

=
J∑

j=1

πj

∫
g(yi | w ,φij) · fA(i)

j

(w)dw .

• Here, fA(i) represents the J-dimensional density over A(ϑi ,π) and f
A
(i)
j

represents the marginal density of the jth coordinate.

• Evaluating density requires computating J univariate integrals.

• By construction, E(Yi ) = ϑi , but variance and other properties depend
on g and distribution of µi .

• Density is invariant to permutations of labels {1, . . . , J}.
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Probability-Valued Means

• Consider M = [0, 1], as in the case of Binomial regression.

• Notice A(ϑ,π) = {µ ∈ [0, 1]J : µTπ = ϑ} is bounded and convex.

• We can obtain the decomposition

A(ϑi ,π) =
{ ki∑
`=1

λ`v
(i)
` : λ ∈ Ski

}
=
{

V(i)λ : λ ∈ Ski
}
.

• V(i) = (v
(i)
1 , . . . , v

(i)
ki

) is a J × ki matrix which forms the convex hull.

• λ(i) belongs to the probability simplex SJ .

• A related approach was taken by Danaher et al. (2012). They used
priors based on the Minkowski-Weyl decomposition to enforce
(biologically motivated) polyhedral constraints for parameters.
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Probability-Valued Means
Random effects distribution

• A natural choice for a random effects distribution on SJ is
λ(i) ind∼ Dirichletki (α).

• However, this leads to each component of µi = V(i)λ(i) following a
linear-combination-of-Dirichlet distribution; its density has no known
closed form for general ki (Provost and Cheong, 2000).

• Instead, we consider a more practical form using Beta random effects
with first and second moments matched to Dirichlet random effects.

• This ensures, e.g., that E(µi ) ∈ A(ϑi ,π) so that

E(Yi ) ≡ πT E(µi ) reduces to ϑi .

• The linear-combination-of-Dirichlet density can differ substantially from
the moment-matched Beta density, but the Mixture Link density with
Dirichlet vs. moment-matched Beta are very close (Raim, 2014).
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Probability-Valued Means
Random effects distribution

• Model with Dirichlet random effects is

Yi
ind∼

J∑
j=1

πjg(yi | µij ,φij)

µi = V(i)λ(i), where V(i) contains vertices of A(ϑi ,π),

λ(i) ind∼ Dirichletki (α
(i)
1 , . . . , α

(i)
ki

).

• We restrict (α
(i)
1 , . . . , α

(i)
ki

) = κ1 (“Symmetric Dirichlet”) for several
reasons.

1. The dimension ki can vary with i so that an arbitrary α will not be
compatible with all observations.

2. The ordering of the vertices in V(i) is arbitrary, and no clear
correspondence between those vertices and the elements of α.
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Symmetric Dirichlet Density
Dirichlet Density for k = 3 and κ = 1
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Probability-Valued Means
Random effects distribution

• Model with Beta random effects is

Yi
ind∼

J∑
j=1

πjg(yi | µij ,φij)

µij = (uij − `ij)ψij + `ij , j = 1, . . . , J

ψij ∼ Beta(aij , bij),

• `ij and uij are min and max elements of v
(i)
j. (the jth row of V(i)).

• Dirichlet random effects would have moments

E(v
(i)T
j. λ) = v̄

(i)
j. and Var(v

(i)T
j. λ) =

kiv
(i)T
j. v

(i)
j. − (ki v̄

(i)
j. )2

k2
i (1 + kiκ)

,

• To obtain aij and bij , equate

E(µij) = (uij − `ij)
aij

aij + bij
+ `ij and Var(µij) =

(uij − `ij)2aijbij
(aij + bij)2(aij + bij + 1)

to the Dirichlet moments and solve for aij and bij .

Andrew Raim Mixture Link GLM Probability-Valued Means 17/41



Probability-Valued Means
Random effects distribution

Model is therefore

Yi
ind∼

J∑
j=1

πjg(yi | µij ,φij)

µij = (uij − `ij)ψij + `ij , j = 1, . . . , J

ψij ∼ Beta(aij , bij),

where

`ij and uij are min and max elements of the jth row of V(i),

aij = (v̄
(i)
j. − `ij)2

(
kiv

(i)T
j. v

(i)
j. − (ki v̄

(i)
j. )2

k2
i (1 + kiκ)

)−1
uij − v̄

(i)
j.

uij − `ij
−

v̄
(i)
j. − `ij
uij − `ij

,

bij = aij

(
uij − v̄

(i)
j.

v̄
(i)
j. − `ij

)
.
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Probability-Valued Means

µ1

µ2

µ3

•

• •

•

•

v1 = (0.7, 1, 0)

v2 = (0.9, 0, 1)
v3 = (0.3, 1, 1)

v4 = (1, 0.5, 0)

v5 = (1, 0, 0.75)

Figure : A(ϑ,π) with π = (0.5, 0.3, 0.2) and ϑ = 0.65.
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Probability-Valued Means

µ1

µ2

•

•

v1 = ( 1011 , 0)

v2 = ( 1
11 , 1)

Figure : A with π = ( 11
20
, 9
20

) and ϑ = 1
2
.
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Probability-Valued Means
Computation of Vertices

Lemma

Suppose v = (v1, . . . , vJ) is a point in A with two or more coordinates
vj /∈ {0, 1}. Then v is not an extreme point of A.

Algorithm

function FindVertices(ϑ,π)
V ← ∅
for j = 1, . . . , J do

if πj > 0 then
for all µ−j ∈ {0, 1}J−1 do

µ∗j ← π−1j

[
ϑ− µT

−jπ−j
]

v∗ ← (µ1, . . . , µj−1, µ
∗
j , µj+1, . . . , µJ)

V ← V ∪ v∗ if v∗ ∈ A(ϑ,π)

return Matrix V with columns v∗ ∈ V

Number of steps is J · 2J−1.
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Probability-Valued Means
Mixture Link Binomial

• Suppose g(yi | w ,φij) = Bin(yi | mi ,w) so that

Yi
ind∼

J∑
j=1

πj

(
mi

yi

)
µyi
ij (1− µij)

mi−yi

µij = (uij − `ij)ψij + `ij , j = 1, . . . , J

ψij ∼ Beta(aij , bij).

• Expectation is E(Y ) = mϑ and variance is

Var(Y ) = mϑ (1−mϑ) + m(m − 1)
J∑

j=1

πj
vT
j. vj. + κ(kv̄j.)

2

k(1 + κk)
.

• Remark: For the case mi = 1, Mixture Link Binomial simplifies to

usual logistic regression model with Yi
ind∼ Ber(mi , ϑi ).
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Probability-Valued Means
Bayesian Mixture Link Binomial

• For a Bayesian specification, we may assume priors

β ∼ N(0,Ωβ),

π ∼ Dirichlet(γ),

κ ∼ Gamma(aκ, bκ).

• A reasonably fast MCMC algorithm can be obtained.

1. Take ψij as augmented data.
2. Use a Metropolis-within-Gibbs sampler.
3. Use simple Random Walk Metropolis Hastings to propose draws for

parameters and augmented data.

• All steps rely on repeated computation of

Qi =
J∑

j=1

πjBin
(
yi | mi , (uij − `ij)ψij + `ij

)
B(ψij | aij , bij);

R implementation of MCMC benefits from writing this part in C/C++.
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Positive Means

µ1

µ2

µ3

• •

•

v1 = (4, 0, 0) v2 = (0, 8, 0)

v3 = (0, 0, 8)

Figure : A(ϑ,π) with π = (0.5, 0.25, 0.25) and ϑ = 2.
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Positive Means

• Very similar to case of probability-valued means, except vertex
computation differs (is much simpler).

• A(ϑ,π) = {µ ∈ [0,∞)J : µTπ = ϑ} is still bounded and convex.

Lemma

Suppose v = (v1, . . . , vJ) is a point in A with two or more coordinates
vj > 0. Then v is not an extreme point of A.

• Therefore, we explicitly have that V(i) = Diag (ϑi/π1, . . . , ϑi/πJ).
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Positive Means

• Now with g(yi | w ,φij) = P(yi | w), Poisson Mixture Link can be
formulated exactly as Binomial Mixture Link.

Yi
ind∼

J∑
j=1

πj
e−µijµyi

ij

yi !

µij = (uij − `ij)ψij + `ij , j = 1, . . . , J

ψij ∼ Beta(aij , bij).

• Expected value of Y is E(Y ) = ϑ with variance

Var(Y ) = ϑ+

 J∑
j=1

πj v̄
2
j. − ϑ2

+
J∑

j=1

πj
kvT

j. vj. − (kv̄j.)
2

k2(1 + κk)

• MCMC can also be done the same way as Binomial setting.
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Real-Valued Means

µ1

µ2

µ3

Figure : A(ϑ,π) with π = (0.5, 0.3, 0.2) and ϑ = 0.
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Real-Valued Means
• We can decompose

A(ϑ,π) = {µ ∈ RJ : µTπ = ϑ}
= {µ̃ ∈ RJ : µ̃Tπ = 0}+ ϑ1.

• For any µ̃ in {µ̃ ∈ RJ : µ̃Tπ = 0} we can write

µ̃J = −π−1J (π1µ̃1 + · · ·+ πJ−1µ̃J−1)

with µ̃1, . . . , µ̃J−1 unrestricted.

• A basis for subspace {µ̃ ∈ RJ : µ̃Tπ = 0} is the J × (J − 1) matrix

V =


1 0 · · · 0
0 1 · · · 0

. . .

0 0 · · · 1
−π1/πJ −π2/πJ · · · −πJ−1/πJ

 .

• We can therefore represent any µ ∈ A(ϑ,π) as

µ = Vλ + ϑ1 for some λ ∈ RJ−1.

Andrew Raim Mixture Link GLM Real-Valued Means 28/41



Real-Valued Means
Random effects distribution

• We can take λ1, . . . , λJ−1
iid∼ N(0, κ2) so that

µ = Vλ + ϑ1 ∼ N(ϑ1, κ2VVT ), where

VVT =

(
I −π−1J π−J

−π−1J πT
−J π−2J πT

−Jπ−J

)
,

I is the (J − 1)× (J − 1) identity matrix,

π−J = (π1, . . . , πJ−1).

• Now the Mixture Link density becomes

f (yi | β,π,φi , κ) =
J∑

j=1

πj

∫
g(yi | w ,φij) · N(w | ϑi , κ2aj)dw , where

aj =

{
1 for j = 1, . . . , J − 1

π−2J πT
−Jπ−J for j = J.
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Real-Valued Means
Normal Mixture Link

• Suppose g(yi | w , φij) = N(yi | w , σ2
j ). Here, Mixture Link density

explicitly integrates to

f (yi | β,π, σ2
1 , . . . , σ

2
J , κ) =

J∑
j=1

πjN(yi | ϑi , κ2aj + σ2
j ).

• If the J subpopulations have a common variance, this simplifies to

f (yi | β,π, σ2, κ) =

(1− πJ)N(yi | ϑi , κ2 + σ2) + πJN(yi | ϑi , κ2π−2J πT
−Jπ−J + σ2).

• If J = 2, then π−2J πT
−Jπ−J = [(1− πJ)/πJ ]2.

1. Recall V was constructed selecting Jth component as constrained.
2. To avoid identifiability/label switching problems, enforce πJ < 1/2.
3. Then small πJ yields a rare “contamination group” with large variance.

• The overall mean is E(Yi ) = ϑi , and

Var(Yi ) = κ2
1− πJ
πJ

+ σ2
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Real-Valued Means
Bayesian Normal Mixture Link

• May need additional constraints on variance parameters for usable
statistical model (work in progress).

• MCMC is simpler than previous cases — do not need augmented data
to avoid integration.
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Back to Example

Table : Binomial

Mean SD 2.5% 50% 97.5%

β0 0.0818 0.0205 0.0421 0.0819 0.1198

β1 0.1194 0.0102 0.0997 0.1193 0.1398

Table : Mixture Link Binomial J = 2 with basic Random Walk Metropolis Hastings

Mean SD 2.5% 50% 97.5%

β0 0.0124 0.0218 -0.0318 0.0125 0.0544

β1 0.0815 0.0103 0.0610 0.0815 0.1014

π1 0.0756 0.0169 0.0463 0.0747 0.1085

κ 0.5699 0.2096 0.2229 0.5479 1.0351
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Back to Example
Trace Plots
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Back to Example
Posterior Predictive Distribution

• The posterior predictive distribution for a new sample ỹ given the
observed sample y is

f (ỹ | y) =

∫
f (ỹ | θ, y)dF (θ | y)

=

∫
f (ỹ | θ)dF (θ | y).

• Then to sample from f (ỹ | y):

1. Sample θ(1), . . . ,θ(R) from posterior f (θ | y).
2. Sample ỹ(r) from f (ỹ | θ(r)) for r = 1, . . . ,R.

Now (ỹ(1), . . . , ỹ(R)) is our predictive sample.

• A prediction for ith observation is 1
R

∑R
r=1 ỹ

(r)
i .

• A 95% prediction interval for ith observation is given by 2.5% and

97.5% quantiles of (ỹ
(1)
i , . . . , ỹ

(R)
i ).
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Back to Example
95% Posterior Prediction Intervals
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Conclusions and Future Work

Conclusions

• Proposed an extension of GLM using finite mixture distribution for the
response.

• Fully likelihood-based.

• Involves a special random effects structure to link regression to mixture
mean.

• Formulated model for real-valued means, positive means, and
probability-valued means.

• Examples show benefits of extra variation through quantile residuals and
posterior predictive intervals.

Future Work

• Study statistical properties.

• Apply to other datasets.

• Compare to other overdispersion models.
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