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Abstract
Finite mixtures have been adopted in a wide range of statistical applications. Their utility

comes at a computational cost and a loss of tractability for common inference techniques.
The Fisher information matrix (FIM) is often used with maximum likelihood estimation
but does not have a simple analytical form in the finite mixture setting. Raim, Neerchal,
and Morel (2014, submitted) have recently shown that, in some finite mixture settings, a
certain block-diagonal matrix becomes close to the FIM as the sample size increases. This
block-diagonal matrix is the FIM of the complete data: the observed data along with a
latent indicator of the subpopulation from the mixture from which an observation is drawn.
The convergence requires that the sample is “grouped” so that individual observations are
known to be drawn from a common subpopulation. One application where this kind of
sampling can naturally be justified is meta-analysis. We consider model-based clustering of
studies in a meta-analysis to explore the nature of their heterogeneity. A simulation study
is presented to illustrate the closeness of the complete data FIM and actual FIM. Use of
the complete data FIM is also demonstrated on an example dataset measuring selenium
content in nonfat milk powder. We conclude that the complete data FIM can serve as a
reasonable approximation to the actual FIM for this kind of application.

Key Words: Fisher Information; Complete Data; Model-Based Clustering; Expo-
nential Family.

1. Introduction

A finite mixture density f(x | θ) =
∑J

`=1 π`f(x | φ`) is a weighted sum of J
densities. We will assume they share a common parametric form, which need not
be the case in general. Finite mixtures are commonly used to analyze data that
exhibit multiple modes or extra variation — more variation than a simpler density
such as f(x | φ`) is capable of modeling. This flexibility comes at the price of
computational and theoretical complication. The Fisher information matrix (FIM)
of X ∼ f(x | θ) has the general form

I(θ) = E

[{
∂

∂θ
log f(X | θ)

}{
∂

∂θ
log f(X | θ)

}T]
(1)

In many applications, the inverse of the FIM is the large sample covariance matrix
of the maximum likelihood estimator (MLE). Therefore, the FIM is routinely used
to compute standard errors and confidence intervals when the MLE is taken as the
estimator and its large sample distribution is used for inference. The FIM is also
commonly used to carry out Wald and Score tests. In most finite mixture settings,
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the general FIM expression (1) does not reduce to something with a simple closed
form.

In this work, we illustrate a simple block-diagonal matrix, denoted Ĩ(θ), that can
provide a very close approximation to the FIM under certain finite mixture models.
This matrix is the FIM of the “complete data” in the sense of the Expectation-
Maximization (EM) algorithm, which is commonly considered for finite mixtures
(McLachlan and Peel, 2000, Section 2.8). The observed X is augmented with a
random variable Z that labels which of the J mixed densities truly generated X.
Suppose that Z assumes values 1, . . . , J with corresponding probabilities π1, . . . , πJ ;
we notate this by Z ∼ Discrete(1, . . . , J ;π). Suppose also that X follows f(x | φ`)
given Z = `. Then marginally X is distributed according to the finite mixture
f(x | θ).

The first work using the block diagonal approximation appears to be from Blis-
chke (1962, 1964), who proposed a method-of-moments estimator for the finite mix-
ture of binomial densities. A block-diagonal matrix is proposed as a substitute for
the FIM to study asymptotic efficiency of the estimator. In later work, Morel and
Nagaraj (1993) extended the block-diagonal matrix to the setting of multinomial
finite mixtures when considering estimation for the random-clumped multinomial
distribution. In both the binomial and multinomial finite mixture cases, the block-
diagonal matrix was shown to become close to the FIM as the number of trials
increases; this justified its use as an approximation. Raim et al. (2014a) noted that
the block-diagonal matrix is obtained as the complete data FIM. This allows the
matrix to be formulated for any missing data problem in great generality, but in-
creasing the sample size may not cause it to become close to the FIM. In binomial
and multinomial finite mixtures, there is something special about the structure of
the sample — observations which are composed of multiple trials — that induces
closeness between the actual and complete data FIM.

Raim et al. (2014b) extended the convergence result from the multinomial finite
mixture setting to the finite mixture of exponential family densities. This justifies its
use outside of the multinomial mixture setting. The major caveat is that we require
a certain “grouped sampling” scheme for the convergence to hold. To introduce
this idea, suppose T follows a binomial finite mixture with m trials; then all m of
its Bernoulli trials are generated from the same (unknown) density within the finite
mixture. Similarly, if X1, . . . ,Xm are distributed according to a finite mixture of
exponential family densities (possibly multivariate), we will require that they are
independent and identically distributed from the same (unknown) density within the
finite mixture. Then, just as in the binomial case, we may work with the sufficient
statistic T , whose complete data FIM will become close to the actual information
when m is sufficiently large.

In applications following a grouped sampling structure, we would observe a
sample T1, . . . ,Tn from the finite mixture so that each Ti is a sufficient statistic
based on mi individual observations Xi1, . . . ,Ximi . Each Ti is assumed to have

an unobserved subpopulation indicator Zi, with Z1, . . . , Zn
iid∼ Discrete(1, . . . , J ;π).

The actual FIM and complete data FIM for the sample are obtained by summing
the corresponding information matrices with respect to each observation as

I(θ) = Im1(θ) + · · ·+ Imn(θ) and Ĩ(θ) = Ĩm1(θ) + · · ·+ Ĩmn(θ).

The closeness of I(θ) and Ĩ(θ) therefore depends on all mi being sufficiently large.
For the rest of the paper, we use a subscripted Im(θ) and Ĩm(θ) to denote actual



and complete data information for a sufficient statistic T of m individuals. We will
omit the subscript for information taken with respect to a sample T1, . . . ,Tn.

To state the result formally, suppose X1, . . . ,Xm are independent and identi-
cally distributed from one of the J exponential family densities f(x | η1), . . . , f(x |
ηJ). Assume that the J densities have the same parametric form, indexed by nat-
ural parameter η`, ` = 1, . . . J . Denote θ = (η1, . . . ,ηJ , π1, . . . , πJ−1) as the full
parameter of the finite mixture.1 Note that πJ = 1−

∑J−1
`=1 π` and is therefore not

included in the unknown θ. The density of the sufficient statistic T can then be
written as

f(t | θ) ∝
J∑
`=1

π` exp
{
ηT` t+m · a(η`)

}
.

Subsequently, the complete data FIM of (T , Z) is

Ĩm(θ) = Blockdiag (π1F1, . . . , πJFJ ,Fπ) , where

F` = Var(T | Z = `),

Fπ = D−1
π + π−1

J 11T ,

and where Dπ = Diag(π1, . . . , πJ−1). Notice that F` is the FIM under the density
f(t | η`) and Fπ is the FIM under the distribution MultJ(1,π).

Raim et al. (2014b) show that Ĩm(θ) − Im(θ) → 0 as m → ∞. The rate of
convergence is seen to depend on the amount of overlap between the mixed densities;
the rate may be very slow if some of the η` are similar, or very fast if they are all
distinct. In practice, if some η` are similar, the slow convergence may be avoided
by representing them by a common mixture component. It can also be shown that
if Im(θ) and Ĩm(θ) are nonsingular, then I−1

m (θ)− Ĩ−1
m (θ)→ 0 as m→∞.

Analysis with finite mixtures often favors quantities of observed information,
such as the Hessian of the log-likelihood or outer product of the score vector, to the
expected Fisher information. The Hessian is especially convenient when Newton-
Raphson iterations are used for estimation; the inverse Hessian is a byproduct of
the iterations and provides an estimate of standard errors. The EM algorithm is an-
other popular approach for estimation in finite mixtures; EM in its pure form does
not produce standard errors as a byproduct, but several methods based on observed
information have been recommended (McLachlan and Peel, 2000, Chapter 2). For
the case of multivariate normal finite mixtures, expressions for the observed infor-
mation are given by Boldea and Magnus (2009). An easily computed approximation
to the FIM may still be of interest despite accessibility to observed information. In
theoretical work, the FIM is a quantity that can be of interest itself. Practically, the
nonsingularity of I(θ) depends on the sample only through its argument, while the
observed FIM is more vulnerable to singularity if an unlucky sample is obtained.

In the remainder of this paper, we consider model-based clustering in the setting
of meta-analysis. Model-based clustering is a natural application of finite mixtures
where the densities f(x | η1), . . . , f(x | ηJ) represent subgroups of the overall pop-
ulation which characterize J potential clusters for observations. The corresponding

1In the finite mixture setting, there is commonly a lack of identifiability due to label-switching
unless special restrictions are made to parameters. It can be seen that the value of

∑J
`=1 πρ(`)f(x |

φρ(`)) is unchanged for any given x when taking ρ(·) to be any permutation of (1, . . . , J). The
general criteria for identifiability can be modified to allow label switching under finite mixtures and
still be meaningful (McLachlan and Peel, 2000, Section 1.14). Label-switching is not a problem for
this work, so we make no attempt to prevent it.



π1, . . . , πJ represent prior probabilities of belonging to the clusters. Fraley and
Raftery (2002) provide more discussion on model-based clustering. Our goal is to
determine a clustering for the studies of a meta-analysis. The grouped sampling
assumption is quite reasonable in this setting if subjects within a study follow a
common distribution.

Section 2 introduces the meta-analysis setup. A simulation study in Section 3
investigates closeness between variance estimates from the complete data FIM and
actual FIM under varying study sizes, numbers of studies, and arrangements of
subpopulations. Section 4 presents an analysis of an example dataset reporting the
content of selenium in nonfat milk powder. Finally, Section 5 concludes the paper.

2. Application to Meta-Analysis

Suppose n studies are carried out to evaluate a certain treatment; e.g., a new drug.
Let yij represent the outcome of the jth individual in the ith study for i = 1, . . . , n
and j = 1, . . . ,mi. Meta-analysis considers the n studies together to determine
whether they are compatible in supporting a common conclusion. If so, they can
combine to make a much stronger inference than any one of the studies alone. Often,
the data are obtained from published studies which provide summary statistics, test
statistics, or p-values, but do not report individual observations. Hartung et al.
(2008) present a comprehensive introduction to the subject of meta-analysis.

Testing for homogeneity is recommended as a first step in meta-analysis practice
before attempting to combine studies to make an inference. Although apparently
not common in the meta-analysis literature, it is possible to use the technique of
model-based clustering to explore heterogeneity in the data. Fitting a finite mixture
of J densities to the n studies may identify clusters of studies which are similar
within cluster and dissimilar between clusters. We may want to be aware of these
patterns before attempting to combine studies. Aitkin (1999) has also considered
applying finite mixture models to meta-analysis, but with a different interpretation.
He assumes a model with a study-level random intercept and uses finite mixtures
as a robust alternative against the common assumption that the random intercept
follows a normal distribution.

Suppose the observed data are the summary statistics

ȳi =
1

mi

mi∑
j=1

yij and s2i =
1

mi − 1

mi∑
j=1

(yij − ȳi)2,

along with a study size mi, for studies i = 1, . . . , n. Suppose there are J latent
populations of normal densities. Conditional on the ith study belonging to the `th
population, assume its observations follow

yij
iid∼ N(µ`, σ

2
` ), j = 1, . . . ,mi. (2)

We furthermore assume unobserved subpopulation indicators zi
iid∼ Discrete(1, . . . J ;π).

In a standard fixed effects model, each study might be characterized by its own
(µi, σi), and homogeneity can be assumed if determined appropriate (Hartung et al.,
2008, Chapter 6). Let 1m denote the m-dimensional vector of ones, and Im denote
the m×m identity matrix. Given zi = `, we have the exponential family

(yi1, . . . , yimi) ∼ N
(
µ`1mi , σ

2
`Imi

)
. (3)



Let Di = (ȳi, s
2
i ) represent the observed data for the ith study, which is a sufficient

statistic for the distribution (3). Also denote θ` = (µ`, σ`) as the unknown param-
eter under the `th density of the mixture. Given zi = `, we have the familiar result
that the statistics

ȳi ∼ N

(
µ`,

σ2`
mi

)
and

(mi − 1)s2i
σ2`

∼ χ2
mi−1

are independent. This leads to the conditional density

f(Di | zi = `) = N

(
ȳi

∣∣∣∣ µ`, σ2`mi

)
×
[
mi − 1

σ2`

]
χ2

(
(mi − 1)s2i

σ2`

∣∣∣∣ mi − 1

)
,

where N(· | µ, σ2) represents the normal density with mean µ and variance σ2, and
χ2(· | ν) represents the chi-square density with ν degrees of freedom. The likelihood
of all the observed data with respect to θ = (θ1, . . . ,θJ ,π) is then

L(θ) =
n∏
i=1

f(Di), where f(Di) =
J∑
`=1

π`f(Di | zi = `). (4)

We emphasize that (4) will cluster the n studies based on membership in the J
normal distributions, as opposed to clustering by test statistics or p-values.

We will consider inference by maximization of the likelihood (4). We will make
use of the matrix Ĩ(θ) in two ways: by considering a two-stage hybrid scoring
algorithm for estimation and in approximating FIM-based standard errors. For
estimation, we first proceed with iterations

θ(g+1) = θ(g) + Ĩ−1(θ(g))S(θ(g)), g = 0, 1, . . .

until an initial convergence | logL(θ(g)) − logL(θ(g−1))| < ε0 is attained at some
iteration g = g∗. We then continue with iterations

θ(g+1) = θ(g) + [−H(θ(g))]−1S(θ(g)), g = g∗, g∗ + 1, . . .

until the final desired convergence | logL(θ(g))−logL(θ(g−1))| < ε. This hybrid scor-
ing approach has a built in robustness to poor starting values from which Newton-
Raphson or Fisher scoring may not progress toward a solution (Raim et al., 2014a).
The Hessian H(θ) of the log-likelihood may be computed by numerical differentia-
tion. The score function S(θ) consists of the entries

∂

∂µ`
logL(θ) =

n∑
i=1

π`f(Di | zi = `)

f(Di)

[
mi
ȳi − µ`
σ2`

]
and

∂

∂σ`
logL(θ) =

n∑
i=1

π`f(Di | zi = `)

f(Di)

[
−mi

σ`
+mi

(ȳi − µ`)2

σ3`
+

(mi − 1)s2i
σ3`

]
,

for ` = 1, . . . J , and

∂

∂π`
logL(θ) =

n∑
i=1

f(Di | zi = `)− f(Di | zi = J)

f(Di)
,

for ` = 1, . . . J − 1.



The complete data FIM Ĩ(θ) is readily computed as the (3J − 1) × (3J − 1)
matrix

Ĩ(θ) = Blockdiag(π1F1, . . . , πJFJ ,Fπ),

where

F` = Diag

(
M

σ2`
,
2M

σ2`

)
and Fπ = n

[
D−1
π + π−1

J 11T
]
,

denoting M =
∑n

i=1mi. Note that Ĩ−1(θ) is readily obtained in closed form by

inverting each block of Ĩ(θ).
To study the average effect of the treatment, define µavg =

∑J
`=1 π`µ`. This

quantity can be estimated by
∑J

`=1 π̂`µ̂` using the invariance property of maxi-
mum likelihood. An estimate of its variance can be obtained by applying the delta
method to the large sample variance approximated by Ĩ−1(θ̂). Because this vari-
ance estimate is derived from the complete data FIM, it requires similar conditions
to provide a useful result.

3. Simulation Study

Based on the meta-analysis setup discussed in Section 2, we present a simulation to
compare the large sample variance obtained from Ĩ−1(θ̂) with that obtained from
I−1(θ̂). Consider four scenarios with J = 2 mixture components:

• Scenario 1: µ = (−1, 1), π = (0.5, 0.5),
• Scenario 2: µ = (0, 1), π = (0.5, 0.5),
• Scenario 3: µ = (−1, 1), π = (0.9, 0.1),
• Scenario 4: µ = (0, 1), π = (0.9, 0.1),

and four scenarios with J = 3 mixture components:

• Scenario 1: µ = (−1, 0, 1), π = (1/3, 1/3, 1/3),
• Scenario 2: µ = (−1, 0.5, 1), π = (1/3, 1/3, 1/3),
• Scenario 3: µ = (−1, 0, 1), π = (0.9, 0.05, 0.05),
• Scenario 4: µ = (−1, 0.5, 1), π = (0.9, 0.05, 0.05).

For both settings of J , Scenarios 1 and 3 feature better separation between mixture
subpopulations, while Scenarios 2 and 4 have subpopulations with more overlap.
On the other hand, Scenarios 1 and 2 have subpopulations with equal proportions,
while in Scenarios 3 and 4 one group represents a large majority. For all scenarios,
we take σ1 = σ2 = σ3 = 1, and a common mi = m for the sample sizes within
study. We consider m ∈ {10, 50, 100} and n ∈ {10, 50, 100}.

For each scenario and each setting of m and n, we repeat the following steps for
r = 1, . . . , R, where R = 500 is the number of repetitions.

1. Draw zi
iid∼ Discrete(1, . . . , J ;π). If z = (z1, . . . , zn) does not contain at least

one representative from each group 1, . . . , J , redraw it.2

2. Draw ȳi ∼ N
(
µ`, σ

2
` /m

)
. and s2i ∼ σ2` (m− 1)−1χ2

m−1 given zi = `. Repeat for
i = 1, . . . , n.

2This is done to avoid problems fitting a J component mixture. Without this provision, we are
very likely to draw problematic samples during the course of a simulation, especially for smaller n.



3. Compute the MLE θ̂(r) using the hybrid scoring algorithm.3

4. Compute the complete data FIM Ĩ(θ̂(r)).
5. Compute I(θ̂(r)) by Monte-Carlo approximation using 20,000 draws from the

density (4) using θ = θ̂(r).

6. Compute the Frobenius norm distance d
(r)
VAR between Ĩ−1(θ̂(r)) and I−1(θ̂(r)).

7. Compute the Euclidean distance d
(r)
SE between standard errors computed from

the diagonal of Ĩ−1(θ̂(r)) with those from I−1(θ̂(r)).

Once these steps are complete, the average distances

d̄VAR =
1

R

R∑
r=1

d
(r)
VAR and d̄SE =

1

R

R∑
r=1

d
(r)
SE

are taken to summarize the outcome.
Tables 1 and 2 show the results for J = 2 and J = 3 respectively. We expect

that the distances d̄VAR and d̄SE will be decreasing when m and n are increased and
when the means are more separated. However, this pattern appears to be broken in
several of the cases when m = 10 and J = 3. Upon closer inspection of the results
used to build the tables, d̄VAR and d̄SE became large when the MLE converged to
a “degenerate” solution. The largest distances in cases {J = 3,Scenario 1,m =
10, n = 50} and {J = 3, Scenario 3,m = 10, n = 10} coincided with a very small
component of π̂ or with components of µ̂ which were very close together. Therefore,
in addition to overlap between subpopulations, very rare subpopulations also have
a detrimental effect on the approximation. Indeed, the expression π−1

` can be seen
as a multiplier while obtaining rates of convergence in Raim et al. (2014b), but it
is de-emphasized as a constant term.

For J = 2 and J = 3 cases where m > 10, degenerate solutions appear not to be
an issue and a pattern becomes more clear. Comparing the corresponding entries
across the four scenarios for J = 2, distances appear to be increasing from Scenario
1 to Scenario 2 to Scenario 3 to Scenario 4. This indicates that distance between
subpopulations may not be a serious issue even in Scenarios 2 and 4. Comparing
the corresponding entries for J = 3 across the four scenarios, distances appear to be
increasing from Scenario 1 to Scenario 3 to Scenario 2 to Scenario 4. This reflects
that overlap between subpopulations 2 and 3 has an adverse effect on the closeness
of Ĩ(θ) and I(θ). For all cases, there appears to be some increase in d̄VAR and d̄SE
when moving from an equal proportion scenario to the corresponding scenario with
one prevalent group.

4. Finite Mixture Analysis of Selenium Data

Hartung et al. (2008) discuss an example meta-analysis with n = 4 studies mea-
suring selenium in nonfat milk powder. The data are shown in Table 3 and were
originally reported by Eberhardt et al. (1989). The response yij represents selenium
content in the jth observation of the ith study.

We fit finite mixtures by maximum likelihood for J = 2 and J = 3, and also
fit the J = 1 (single subpopulation, no mixture) case for comparison. Table 4

3If the negative Hessian evaluated at θ̂(r) is not positive semidefinite, we discard the rth rep-
etition. This indicates that the solution of the likelihood optimization was not a maximum. We
noticed that such repetitions sometimes yielded elements of Ĩ(θ̂(r)) and I(θ̂(r)) which differed by
orders of magnitude. This and Footnote 2 are related to our coming discussion on “degenerate”
solutions.



Table 1: Simulation results for J = 2.

(a) Scenario 1

m n d̄VAR d̄SE
10 10 0.001549 0.003046

50 0.000206 0.000942

100 0.000097 0.000634

50 10 0.000292 0.000904

50 0.000060 0.000401

100 0.000028 0.000269

100 10 0.000230 0.000753

50 0.000049 0.000339

100 0.000024 0.000240

(b) Scenario 2

m n d̄VAR d̄SE
10 10 0.079266 0.080574

50 0.007517 0.029456

100 0.003574 0.020157

50 10 0.000328 0.001050

50 0.000061 0.000419

100 0.000029 0.000279

100 10 0.000230 0.000753

50 0.000049 0.000339

100 0.000024 0.000240

(c) Scenario 3

m n d̄VAR d̄SE
10 10 0.005189 0.007406

50 0.001454 0.003672

100 0.000549 0.002125

50 10 0.000379 0.001168

50 0.000086 0.000503

100 0.000038 0.000329

100 10 0.000243 0.000914

50 0.000052 0.000392

100 0.000022 0.000254

(d) Scenario 4

m n d̄VAR d̄SE
10 10 0.180094 0.148739

50 0.064043 0.097045

100 0.023615 0.062747

50 10 0.000617 0.001914

50 0.000135 0.000787

100 0.000052 0.000456

100 10 0.000243 0.000915

50 0.000052 0.000392

100 0.000022 0.000254

Table 2: Simulation results for J = 3.

(a) Scenario 1

m n d̄VAR d̄SE
10 10 0.888527 0.260816

50 0.024406 0.073086

100 0.009997 0.048623

50 10 0.000774 0.002072

50 0.000115 0.000628

100 0.000057 0.000429

100 10 0.000459 0.001218

50 0.000089 0.000493

100 0.000045 0.000349

(b) Scenario 2

m n d̄VAR d̄SE
10 10 0.431405 0.280111

50 0.143226 0.202966

100 0.067697 0.165858

50 10 0.018799 0.037173

50 0.001805 0.011061

100 0.000855 0.007510

100 10 0.001524 0.005118

50 0.000198 0.001559

100 0.000096 0.001069

(c) Scenario 3

m n d̄VAR d̄SE
10 10 0.247619 0.229594

50 0.823684 0.341970

100 0.165029 0.216319

50 10 0.001732 0.004162

50 0.000681 0.002535

100 0.000290 0.001398

100 10 0.000499 0.001477

50 0.000170 0.000829

100 0.000083 0.000547

(d) Scenario 4

m n d̄VAR d̄SE
10 10 0.392268 0.252544

50 0.318579 0.269270

100 0.291981 0.254594

50 10 0.019179 0.035859

50 0.031873 0.040131

100 0.006490 0.022828

100 10 0.003068 0.008994

50 0.001557 0.006725

100 0.000636 0.003828



shows the AIC, BIC, AICC, and log-likelihood for the three fitted models. Table 5
shows estimates, standard errors, and 95% confidence intervals. The intervals for
π1 and π2 are very wide; this is likely due to the large standard error resulting from
modest sample sizes. Table 6 shows plug-in estimates of the posterior probabilities
P(Zi = ` | Di) that the ith study belongs to the `th cluster. Table 7 shows standard
errors for the MLE θ̂ computed by four methods: the actual information matrix
I(θ̂), the complete data information matrix Ĩ(θ̂), the Hessian H(θ̂) of the log-
likelihood, and the parametric bootstrap variance estimator V̂boot. The matrix
I(θ̂) is computed by Monte-Carlo approximation using 400,000 draws from the
density (4) using θ = θ̂. The Hessian H(θ̂), or more specifically the negative of
its inverse, is available as a byproduct of the hybrid scoring method. The matrix
V̂boot is computed by drawing 10,000 bootstrap samples from the density (4) using

θ = θ̂, fitting an MLE θ̂
(b)
boot to each bootstrap sample b, and computing the sample

variance of the 10,000 bootstrapped MLEs.4

We notice that the posterior probability of each observation belonging to one
of the J clusters is very close to 1. This can be explained by a result from Raim
et al. (2014b), showing that P(Zi = ` | Di) converges to 1 rapidly when ` is the
“true” cluster, and converges rapidly to 0 otherwise. When J = 2 clusters are
assumed, cluster 2 consists only of study 3, while cluster 1 consists of the other
studies. When J = 3 clusters are assumed, studies 2 and 4 are moved from cluster
1 to the new cluster 3.5 These cluster assignments are reflected in the estimates
and standard errors, which do not change between J = 2 and J = 3 for cluster 2.
In cluster 1, the estimate for σ1 increases when studies 2 and 4 are moved, and π1 is
decreased. The estimate of the mean µ1 changes to reflect that cluster 1 represents
study 1. Referring back to the data in Table 3, it is seen that s21 is very large, s22 and
s24 are medium, and s23 is very small. Therefore, our likelihood-based clustering is
primarily based on the sample variance. The reader may have been able to produce
this clustering by eyeballing the dataset; however, a more complicated dataset may
have treatment and control groups, multiple outcomes, or many more studies. In
these cases, model-based clustering can help to identify patterns that are not so
obvious.

Table 7 shows that Ĩ−1(θ̂) and I−1(θ̂) yield very similar standard errors when
J = 2. For this case, there is little disadvantage in using the complete data FIM
in place of the actual FIM; the advantage being greatly simplified computation.
In the J = 3 case, the differences in the two types of standard errors are more
noticeable. Figure 1 plots the densities N(µ̂`, σ̂

2
` ) for ` = 1, . . . , J . In the case of

J = 3, we can see that Clusters 1 and 3 are somewhat overlapped which may affect
the closeness of Ĩ−1(θ̂) and I−1(θ̂). We also notice that the FIM-based standard
errors sometimes differ from those computed using H(θ̂) and V̂boot. The goal of
this study is not necessarily to suggest which standard errors are preferred. If we
are confident about the specification of the model and the method of estimation,
and the greatly increased computing workload is not an issue, we might trust the
standard errors from V̂boot above the others.

It is interesting to mention the tests of heterogeneity for the Selenium data
reported by Hartung et al. (2008). Eight different procedures are compared to test

4As in the simulation study, we discard bootstrap repetitions where −H(θ̂
(b)
boot) is not positive

semidefinite.
5Recalling Footnote 1, it is not necessary that cluster labels 1, . . . , J will retain similar meanings

across multiple analyses of the data. In this case however, we can observe how the clusters are
related across analyses.



Table 3: Selenium data.

Study m ȳ s2

1 8 105.00 85.711

2 12 109.75 20.748

3 14 109.50 2.729

4 8 113.25 33.640

Table 4: Fit statistics for Selenium models.

J = 1 J = 2 J = 3
LogLik -35.9071 -25.5588 -23.2146
AIC 75.8143 61.1176 62.4293
AICC 87.8143 31.1176 33.6293
BIC 74.5869 58.0491 57.5196

equality of the means of the n = 4 studies. Of these, seven do not find significant
evidence of heterogeneity. The test that does find evidence of inequality of the
means is the ANOVA F-test, which assumes a common variance across all studies.
In our clustering, we have similarly found that heterogeneity is due to the variances
of the studies and not necessarily due to the means.

5. Conclusions

In this paper, we illustrated a model-based clustering application in meta-analysis
where the complete data FIM serves as a reasonable approximation for the actual
FIM. This setting is naturally compatible with our assumption of grouped sampling;
that m individuals from the same group are known to belong to a common subpop-
ulation of the mixture. We find in the Selenium data analysis that the standard
errors from the complete data FIM are very close to those from the actual FIM for
a J = 2 component mixture, but not as close when J = 3. The best result will be
achieved when all study sizes are large, densities of the finite mixture are distinct
from one another, and none are associated with an extremely small proportion of
the overall population.

In addition to meta-analysis, we are hopeful that the grouped sampling assump-
tion can be justified in a variety of other kinds of statistical analyses. Users of
finite mixtures in these settings could benefit from simplified computation with the
complete data FIM.
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Table 5: Estimates for finite mixture analysis of Selenium data. Standard errors
were computed using the inverse of the complete data FIM. 95% confidence intervals
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(a) J = 1 (no mixture).

Est. SE CI Lo CI Hi
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σ 5.7201 0.6241 3.9872 7.4529

(b) J = 2.
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Table 6: For the Selenium analysis, posterior probabilities that each study belongs
to clusters 1, . . . , J . The symbol (∗) marks the cluster with the highest probability
for each study.

(a) J = 2.

Study Group 1 Group 2

1 1.00E+00∗ 5.72E−58
2 1.00E+00∗ 3.97E−12
3 2.66E−06 1.00E+00∗
4 1.00E+00∗ 2.61E−24

(b) J = 3.

Study Group 1 Group 2 Group 3

1 1.00E+00∗ 2.10E−58 2.31E−04
2 4.32E−03 1.77E−12 9.96E−01∗
3 7.22E−09 1.00E+00∗ 4.32E−05
4 7.95E−03 1.53E−24 9.92E−01∗

Table 7: Standard errors for Selenium data analysis. Each column displays the
square roots of the diagonals of the given matrix.

(a) J = 2.
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(b) J = 3.

−H−1(θ̂) Ĩ−1(θ̂) I−1(θ̂) V̂boot
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σ3 0.8128 0.7910 0.8795 1.0150

π1 0.2193 0.2174 0.2338 0.1164

π2 0.2165 0.2165 0.2187 0.1123
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