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Abstract
Spatio-temporal change of support (STCOS) methods are designed for statistical inference and prediction
on spatial and/or time domains which differ from the domains on which the data were observed. Bradley,
Wikle, and Holan (2015) introduced a parsimonious class of Bayesian hierarchical spatio-temporal models
for STCOS for Gaussian data through a motivating application involving the American Community
Survey (ACS), an ongoing survey administered by the U.S. Census Bureau that measures key socio-
demographic variables for various populations in the United States. Importantly, their methodology
provides ACS data users a principled approach to estimating variables of interest, along with associated
measures of uncertainty, on customized geographies and/or time periods. In this work, we revisit use
of the STCOS methodology to capture median household income at the county level. We use the
Deviance Information Criterion (DIC) to study variations in the prior and in basis function specification,
and to select a reasonable final model. This work makes use of an R package which is currently under
development, whose aim is to make STCOS methodology broadly accessible to federal statistical agencies
such as the Census Bureau, the ACS data-user community, and to the general R-user community.

Key Words: American Community Survey; Basis Functions; Bayesian; Change of Support;
Moran’s I Propagator; Spatio-Temporal.

1. Introduction

The American Community Survey (ACS) is an ongoing survey administered by the U.S. Cen-
sus Bureau to measure key socioeconomic and demographic variables for the U.S. population.
ACS data are available to the public through the American FactFinder (http://factfinder.
census.gov) website from year 2005 through the present. Estimates have historically been
released for 1-year, 3-year, or 5-year periods; 3-year estimates were discontinued after 2013. At
their finest geography, ACS data are released at the census block-group level; however, esti-
mates for an area are suppressed unless the area meets certain criteria. For example, an area
must have a population of at least 65,000 for 1-year estimates to be released, but there is no
population requirement for 5-year estimates (U.S. Census Bureau, 2016).

The Census Bureau releases yearly ACS estimates on a variety of geographies including
states, counties, census tracts, and school districts. Because statistical agencies like the Census
Bureau have direct access to the confidential survey microdata, releases for new geographies or
period lengths can be prepared as needed. However, data users may be interested in custom ge-
ographies or nonstandard time periods, which are not provided by the agency. Spatio-temporal
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change of support (STCOS) methodology enables data users to compute model-based estimates
for custom geographies and time periods using available ACS releases. The STCOS methodology
developed in Bradley et al. (2015) makes use of spatio-temporal dependencies in direct survey
estimates (and also incorporates associated direct variance estimates) through a Bayesian hi-
erarchical model and provides estimates, predictions, and appropriate measures of uncertainty.
STCOS methodology is not limited for use in applications involving ACS data, but was devel-
oped specifically with ACS in mind. See Gotway and Young (2002) Bradley et al. (2015), and
the references therein for a review of the change of support literature.

The STCOS problem can be motivated graphically as follows. We will take median house-
hold income as our variable of interest throughout this article. Estimates for median household
income are available at the county level for all publicly available 1-year and 5-year ACS re-
leases, and 3-year releases prior to 2013. Figure 1 shows both direct estimates and associated
variance estimates for the continental U.S.1 We notice that 1-year and 3-year estimates have
been suppressed for many counties. Each of the geographies containing direct estimates, which
will be used to train the STCOS model, are referred to as source supports. Suppose there is
interest in producing model-based estimates of median household income on the geography of
congressional districts.2 Geographies on which we want to produce estimates and predictions
are referred to as target supports. Congressional districts as defined in the year 2015 are plotted
in Figure 2; there are 433 total districts in the continental U.S. We emphasize that counties
and congressional districts do not necessarily align, and the crux of the STCOS problem is
to “translate” between the county-level observations and the congressional districts. The final
type of support is the fine-level support, which for this example will be taken as the complete
set of counties shown in Figure 2. The STCOS methodology works by translating each of the
source supports to the fine-level support during training. Once the model is trained, estimates
and predictions on target supports are obtained by translating from the fine-level support.

The STCOS model has already been proposed and fully specified by Bradley et al. (2015),
but requires significant expertise (and time) to implement, which many potential users will not
have. This article is part of an initiative to produce a user-friendly and efficient R package
for the STCOS model. The software will take source and fine-level supports as input, fit the
Bayesian hierarchical model via Gibbs sampling, and produce estimates and predictions on
target supports of interest. The package is nearing completion, and we use this article as an
opportunity to present a large-scale data analysis with a prototype version of the software.
Using all available county-level ACS source supports for median household income, we carry
out a model selection to choose from several prior covariance structures as well as some options
for basis functions. A model is selected using the Deviance Information Criterion (Spiegelhalter
et al., 2002), and some preliminary model-based results are shown on county and congressional
district geographies.

The rest of the paper will proceed as follows. Section 2 describes how the public ACS data
were obtained from the American FactFinder website for use in our study. Section 3 reviews
the STCOS model and the Markov-Chain Monte Carlo (MCMC) algorithm (a Gibbs sampler).
Section 4 documents the model selection study. Results based on the selected model are shown
in Section 5. Finally, Section 6 concludes the paper.

1Alaska, Hawaii, and other U.S. territories have been excluded from our study to facilitate display of graphical
results.

2Note that the Census Bureau releases ACS estimates on congressional districts. This geography serves as
an illustrative example of change-of-support methodology in which model-based estimates can be compared to
direct estimates.
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Table 1: List of ACS datasets obtained from the American FactFinder website. “CD” is an
abbreviation for congressional districts.

2015 ACS 5-year 2015 ACS 1-year 2014 ACS 5-year 2014 ACS 1-year

2013 ACS 5-year 2013 ACS 3-year 2013 ACS 1-year 2012 ACS 5-year

2012 ACS 3-year 2012 ACS 1-year 2011 ACS 5-year 2011 ACS 3-year

2011 ACS 1-year 2010 ACS 5-year 2010 ACS 3-year 2010 ACS 1-year

2009 ACS 5-year 2009 ACS 3-year 2009 ACS 1-year 2008 ACS 3-year

2008 ACS 1-year 2007 ACS 3-year 2007 ACS 1-year 2006 ACS

2005 ACS 2015 CD 1-year 2015 CD 5-year

2. Preparation of ACS Data

The data used in this report were obtained from the American FactFinder website (http:
//factfinder.census.gov). Data were obtained using the “Advanced Search” option, entering
“S1901” as the table name and selecting “County — 050” as the geography level. Comma
separated value (CSV) files containing estimates and margins of error for household-level median
income (in U.S. dollars) then become available for download. Through related menus in the
Advanced Search section, we also obtained shapefiles corresponding to each of these datasets.
The margin of error (MOE) represents half the width of the confidence interval ȳ±zα/2 ·SE with
α = 0.1; i.e., MOE = 1.645 · SE. Because STCOS methodology requires a variance estimate,
we make the transformation VAR = MOE2/1.6452. Congressional district data are obtained
similarly as county-level data, except that “Congressional District — 500” is selected as the
geography level. The 114th Congress contains years 2014 and 2015. Table 1 lists datasets from
the American FactFinder website where are used in the remainder of the paper.

Shapefiles for the source, target, and fine-level supports must be based on the same geo-
graphic projection so that they are compatible for use in the model. We have ensured that
source and target shapefiles match the projection used in the fine-level shapefile. We have
selected the fine-level shapefile to be the one corresponding to the 2015 5-year estimates.

3. Review of the STCOS Model

Let T = {TL, . . . , TU} denote times for which direct estimates are available and L denote the
set of all possible time periods. For ACS data, T consists of the years 2005 through 20153 and
L = {1, 3, 5} correspond to 1-year, 3-year, and 5-year period releases. Data may not have been
released for all (t, ℓ) ∈ T × L; for example, 3-year estimates were discontinued after 2013. Let
(T ×L)∗ denote the subset of T ×L that does correspond to a release. For each (t, ℓ) ∈ (T ×L)∗,
the associated source support Dtℓ is a collection of areas. For each area A ∈ Dtℓ, Z

(ℓ)
t (A) and

σ2tℓ(A) are the direct survey estimate and associated variance for the survey variable of interest.
We will let DB = {B1, . . . , BnB} denote the fine level support.

The STCOS model is a Bayesian hierarchical model which can be described at a high level
in three parts:

1. The data model is

Z
(ℓ)
t (A) = Y

(ℓ)
t (A) + ε

(ℓ)
t (A), ε

(ℓ)
t (A)

ind∼ N(0, σ2tℓ(A)),

for A ∈ Dtℓ and (t, ℓ) ∈ (T × L)∗.
32016 ACS estimates became available during preparation of this article and are therefore not included in the

study.
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2. The process model is

Y
(ℓ)
t (A) = h(A)⊤µB +ψ

(ℓ)
t (A)⊤η + ξ

(ℓ)
t (A),

η ∼ N(0, σ2KK), ξ
(ℓ)
t (A)

iid∼ N(0, σ2ξ ),

for A ∈ Dtℓ and (t, ℓ) ∈ (T × L)∗.

3. The parameter model is

µB ∼ N(0, σ2µI), σ2µ ∼ IG(aµ, bµ), σ2K ∼ IG(aK , bK), σ2ξ ∼ IG(aξ, bξ).

Here we assume that direct estimates Z
(ℓ)
t (A) are a noisy observation of a latent process Y

(ℓ)
t (A).

The variance of the noise ε
(ℓ)
t (A) is assumed to be σ2tℓ(A), the variance of the direct estimate.

The mean of the latent process Y
(ℓ)
t (A) consists of a coarse spatial trend h(A)⊤µB and a

spatio-temporal random process ψ
(ℓ)
t (A)⊤η. Conjugate priors are assumed for the coefficients

and variance parameters from the previous two stages. The matrix K, which appears in the
prior covariance of η, is assumed to be known and computable from the fine-level support. More
explanation on each of these terms is given below.

The latent process model is motivated by the following construction. Define a continuous-
space discrete-time process on u ∈

⋃nB
i=1Bi, t ∈ T ,

Y (u; t) = δ(u) +

∞∑
j=1

ψj(u; t) · ηj ,

where δ(u) is a large-scale spatial trend process and {ψj(u, t)}∞j=1 is a prespecified set of spatio-
temporal basis functions. Integrating Y (u; t) uniformly over u ∈ A and an ℓ-year period,

Y
(ℓ)
t (A) =

1

|A|

∫
A
δ(u) du︸ ︷︷ ︸

large-scale spatial trend

+
1

ℓ|A|

t∑
k=t−ℓ+1

r∑
j=1

∫
A
ψj(u; k) · ηj du︸ ︷︷ ︸

spatio-temporal random process

+
1

ℓ|A|

t∑
k=t−ℓ+1

∞∑
j=r+1

∫
A
ψj(u; k) · ηj du︸ ︷︷ ︸

remainder

= µ(A) +ψ
(ℓ)
t (A)⊤η + ξ

(ℓ)
t (A).

For the remainder, we assume that ξ
(ℓ)
t (A)

iid∼ N(0, σ2ξ ). We make use of local bisquare basis
functions for the small-scale spatio-temporal trend, which are of the form

ψj(u, t) =

[
1− ∥u− cj∥2

w2
s

− |t− gt|2

w2
t

]2
· I(∥u− cj∥ ≤ ws) · I(|t− gt| ≤ wt).

These functions require specification of the number and location of spatial knot points cj ,
j = 1, . . . , rspace, the number and location of temporal knot points gt, t = 1, . . . , rtime, the
spatial radius ws, and the temporal radius wt. Some possibilities are investigated in Section 4.

Once the basis function is fully specified, we must compute it at the area level. For area A
and an ℓ-year period, we take a Monte Carlo approximation

ψ
(ℓ)
jt (A) ≈

1

ℓQ

t∑
k=t−ℓ+1

Q∑
q=1

ψj(uq, k),
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using a uniform random sample u1, . . . ,uQ on A.
Next, for the large-scale spatial trend process, we make the simplifying assumption that

δ(u) =

nB∑
i=1

µiI(u ∈ A ∩Bi),

for a given area A. Then δ(u) takes on a constant value on each overlap A ∩ Bi for Bi ∈ DB.
Now, integrating over u ∈ A,

µ(A) =
1

|A|

nB∑
i=1

∫
A∩Bi

δ(u)du =
1

|A|

nB∑
i=1

µi

∫
A∩Bi

du =

nB∑
i=1

µi
|A ∩Bi|

|A|
= h(A)⊤µB.

where we have defined

h(A) = (|A ∩B1|/|A|, . . . , |A ∩BnB |/|A|)
⊤.

The vector h(A) is computed from the source and fine-level supports and is therefore a known
quantity in the analysis. For example, if the geographies are specified through shapefiles, modern
libraries such as the R package sf (Pebesma, 2017) can readily compute overlaps between areas.
The coefficient

µB = (µ1, . . . , µnB )
⊤

is unknown, and must be estimated in the analysis. Note that µB represents the change-of-
support coefficient between the fine-level support and all other supports, and is the primary
quantity of interest in the model. To simplify the remaining presentation, we may now write the
model in vector form. Denoting I = ((A, t, ℓ) : A ∈ Dtℓ, (t, ℓ) ∈ (T × L)∗) as the list of triples
(A, t, ℓ) from the source supports taken in a particular order, we may write

Z = vec
(
Z

(ℓ)
t (A) : (A, t, ℓ) ∈ I

)
, H = rbind

(
h
(ℓ)
t (A)T : (A, t, ℓ) ∈ I

)
,

S = rbind
(
ψ

(ℓ)
t (A)T : (A, t, ℓ) ∈ I

)
, ξ = vec

(
ξ
(ℓ)
t (A) : (A, t, ℓ) ∈ I

)
,

ε = vec
(
ε
(ℓ)
t (A) : (A, t, ℓ) ∈ I

)
, V = diag

(
σ2tℓ(A) : (A, t, ℓ) ∈ I

)
, (3.1)

and h
(ℓ)
t (A) ≡ h(A). The notation vec(S) is used to mean that a vector is constructed from

the elements of S, while diag(S) represents a matrix whose diagonal elements consist of S, and
rbind(S) represents a matrix with the elements of S as rows. The model can now be written

Z =HµB + Sη + ξ + ε, ε ∼ N(0,V ).

We require a matrixK to complete specification of the model. Suppose the fine-level support
behaves according to the process

Y ∗
t = µB + νt,

νt =Mνt−1 + bt,

bt
iid∼ N(0, σ2K(I −A)−), (3.2)

for t ∈ T , where A is the adjacency matrix of DB and X− represents a generalized inverse of
the matrixX. That is, {Y ∗

t } is a vector autoregressive (VAR) process in time and a conditional
autoregressive (CAR) process in space. Let Σy∗ denote the covariance matrix of (Y ∗

t : t ∈ T )
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and S∗ denote the basis function expansion on the fine-level geography. We obtain K as the
minimizer of

∥Σy∗ − S∗CS∗⊤∥F, over r × r positive semidefinite matrices C, (3.3)

using the Frobenius norm ∥·∥F. The solution to (3.3),

C∗ = (S∗⊤S∗)−1S∗⊤Σy∗S
∗(S∗⊤S∗)−1,

provides the best positive approximant to Σy∗ . Bradley et al. (2015) further discuss this ap-
proach within the context of the present model, and Higham (1988) discusses the positive
approximant problem in a general setting. We may write Σy∗ = σ2KΣ̃y∗ so that

C∗ = σ2KK, K = (S∗⊤S∗)−1S∗⊤Σ̃y∗S
∗(S∗⊤S∗)−1 (3.4)

and Σ̃y∗ and K are free of unknown parameters. We consider three possible structures for K:

1. Independence: Take K = I to assume no spatial or temporal covariance in η.
2. Spatial-only: Let Σy∗ = σ2K(I −A)−⊗ I|T |, where ⊗ represents the Kronecker product,

which assumes no temporal covariance, and take K as in (3.4).
3. Random Walk: Take M = I so that the fine-level process defined in (3.2) is a vector

random walk with nonstationary autocovariance function

Γ(t, h) =

{
tσ2K(I −A)− if h ≥ 0,

(t− |h|)σ2K(I −A)− if −t < h < 0.

This yields

Σy∗ =


Γ(1, 1) Γ(1, 2) · · · Γ(1, |T |)
Γ(2, 1) Γ(2, 2) · · · Γ(2, |T |)

...
...

. . .
...

Γ(|T |, 1) Γ(|T |, 2) · · · Γ(|T |, |T |)


as the covariance of {Y ∗

t }, and K is computed using (3.4).

We can derive a Gibbs sampler by considering the joint distribution

f(Z,η, ξ,µB, σ
2
µ, σ

2
K , σ

2
ξ ) = N(Z |HµB + Sη + ξ,V ) ·N(ξ | 0, σ2ξI) ·N(η | 0,K)

×N(µB | 0, σ2µI) · IG(σ2µ | aµ, bµ) · IG(σ2K | aK , bK) · IG(σ2ξ | aξ, bξ).

Determining each of the full conditional distributions of µB, η, ξ, σ
2
µ, σ

2
K , and σ2ξ , we obtain

the following Gibbs steps:

� [µB | • ] ∼ N(ϑµ,Ω
−1
µ ),

ϑµ = Ω−1
µ H

⊤V −1(Z − Sη − ξ), Ωµ =H⊤V −1H + σ−2
µ I.

� [η | • ] ∼ N(ϑη,Ω
−1
η ),

ϑη = Ω−1
η S

⊤V −1(Z −HµB − ξ), Ωη = S⊤V −1S + σ−2
K K−1.

� [ξ | • ] ∼ N(ϑξ,Ω
−1
ξ ),

ϑξ = ΩξV
−1(Z −HµB − Sη), Ω−1

ξ = V −1 + σ−2
ξ I.

� [σ2µ | • ] ∼ IG(αµ, βµ), αµ = aµ + nB/2 and βµ = bµ + µ⊤
BµB/2.

� [σ2K | • ] ∼ IG(αK , βK), αK = aK + r/2 and βK = bK + η⊤K−1η/2.

� [σ2ξ | • ] ∼ IG(αξ, βξ), αξ = aξ +N/2 and βξ = bξ + ξ
⊤ξ/2.
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4. Model Selection

In order to apply the STCOS methodology, the analyst must make several modeling choices
including the prior covariance structure for K, the number of knot points used to define the
basis functions, and the radius parameters in the basis functions. We carried out a model
selection study using Deviance Information Criterion (DIC) to find appropriate choices. We
label the three prior covariance structures discussed in Section 3, Independence, Spatial-only,
and Spatial with Random-Walk, as IND, SP and RW respectively. Temporal knot points are
fixed to be 2005, 2005.5, . . . , 2014.5, 2015, so that there are 21 equally spaced points through
T at half-year intervals. We take the temporal radius parameter wt = 1 throughout the study.
We select the spatial knot points via a space-filling design on DB, which is implemented in the
R fields package (Nychka et al., 2015). The spatial radius parameter ws must be selected so
that it is compatible with the projection used in the shapefiles of the supports; for example,
ws = 1 has a very different effect if shapefile distances are specified in meters than in kilometers.
Therefore, we take a data-driven approach. Based on the selection of knot points {cjt}, where
cjt = (cj , gt) for j = 1, . . . , rspace and t = 1, . . . , rtime, we compute the distance matrix of {cjt}
and let Q0.05 be the 0.05 quantile of the nonzero upper-triangular entries of the matrix. We
then take ws = τs ·Q0.05, where τs is a multiplier selected by the analyst. In our DIC study, we
consider τs ∈ {0.5, 1.0} and rspace ∈ {250, 500}. Intuitively, a larger τs will yield more smoothing
of spatial information in the basis, and more knot points will make use of finer geographical
features. Figure 3 plots spatial knot points for the four combinations of τs and rspace used in
this study. For each of these combinations, it can be seen that each point in the domain is
within the radius of multiple spatial knot points.

Multicollinearity may be present in the columns of S, which will become more pronounced
as the number of knot points are increased. In our experience, this multicollinearity can cause
severely slow convergence of the MCMC sampler. We therefore reduce the n×r matrix S using
principal components analysis (PCA). Suppose UDU⊤ is the eigendecomposition of S⊤S, and
Ũ contains the r̃ columns of U corresponding to the r̃ ≤ r largest magnitude eigenvalues in
D. The transformation T (S) = SŨ⊤ is then applied to obtain a reduced S.4 In our model
selection study, we consider taking r̃ corresponding to 60%, 75%, and 90% of the variation in
the eigenvalues.

To summarize, our exploratory model selection exercise considers four factors: the prior
covariance structures IND, SP and RW, τs ∈ {0.5, 1.0}, rspace ∈ {250, 500}, and eigenvalue
proportions 60%, 75%, and 90%. For each combination of factors, we prepare the terms of
the STCOS model and run the Gibbs sampler for 2000 iterations. We discard the first 500
iterations as a burn-in period and save every 10th remaining iteration. Thinning is useful to
access convergence for this model because of the large storage required for µB, η, and ξ. The
maximum likelihood estimator (MLE) has been used as the initial value of the sampler in all
cases. DIC is computed using the saved draws from MCMC sampling; smaller values of DIC
indicate better fitting models. It is also important to check convergence of the Gibbs sampler;
we have visually examined trace plots of the sampled chains (not shown) and detected no lack
of convergence. Although only 2000 draws were used in each run (in the interest of completing
the study in a reasonable amount of time) the resulting chains appeared adequate to compute
DIC.

Table 2 presents our model selection results. Displayed DIC values are negative because
density values evaluated at most observations were larger than 1. The table values indicate
that the priors do not produce vastly different results, but the best model under IND achieves
a slightly better DIC than the best model under the other options. It appears that τs = 0.5 is

4Note that the same transformation T (S) must also be applied to S∗ in the computation of K.
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too small, and τs = 1.0 provides a better fit in all cases. Likewise, taking more eigenvalues of S
makes a large improvement to the fit. However, MCMC diagnostics suffered noticeably when
using 90% of the eigenvalues and only 60% and 75% levels are considered further. Increasing
the number of spatial knot points from 250 to 500 usually improved the fit. However, in some
cases such as row 4 (IND, 250, 1.0, 0.60) versus row 10 (IND, 500, 1.0, 0.60), the fit became worse
with more knot points; this may be due to too much reduction on the dimension of S. After
examining Table 2, we selected the model in row 11 (IND, 500, 1.0, 0.75).

5. Results

Using the selected model from Section 4, we ran a longer MCMC with 10,000 iterations, dis-
carding the first 1,000 as a burn-in period, saving every 10th remaining iteration, and taking
the MLE as the initial value. Visual inspection of trace plots was used to assess mixing of the
sampled chains, with no lack of convergence detected. We are primarily interested in draws of
the mean

E(Y
(ℓ)
t (A) | µB,η) = h(A)

⊤µB +ψ
(ℓ)
t (A)⊤η, (5.1)

where A is an area of interest (not necessarily in the source supports), or draws from the
posterior predictive distribution

[Y
(ℓ)
t (A) | µB,η, σ

2
ξ ] ∼ N

(
h(A)⊤µB +ψ

(ℓ)
t (A)⊤η, σ2ξ

)
(5.2)

using draws from the posterior distribution based on the observed Z and V . The posterior
predictive distribution (5.2) generally produces larger variability than the posterior mean (5.1).
We take the sample mean of MCMC draws from either distribution as a point estimate, and
the sample standard deviation (SD) to measure variability in the respective distribution.

Figures 4 and 5 compare county-level direct estimates and SDs with model-based versions
using (5.1); Figure 4 displays 1-year estimates while Figure 5 displays 5-year estimates. The
model appears to be effective in capturing spatial patterns in both 1-year and 5-year estimates,
in areas where direct estimates have been released. In most areas, the model-based SD is
substantially smaller than the direct SD, which reflects the model’s increased precision as it
is able to borrow strength across the history of ACS releases. Figure 6 compares direct and
model estimates on the geography of congressional districts. The results here do not match as
well as they do for counties, but some general patterns in the direct estimates can be seen in
the model-based estimates. For example, districts along the east coast are seen to have larger
incomes than surrounding areas. Figures 7 and 8 present another comparison of the county-level
5-year estimates and congressional district 1-year estimates. Scatter plots in Figure 7 show that
there is a high correlation between direct and model-based estimates for congressional districts,
although not as ideal as the correlation at the county level. Figure 8 plots the direct estimates
as a series in increasing order and shows the model-based estimates as a separate series. This
presents another view of the increased variability in the congressional district estimates, and
also shows that we have systematically underestimated larger direct estimates to an extent.

6. Conclusions

In this article, we have presented a small study using an R package which is being developed for
STCOS methodology. The study led to several interesting conclusions. The choice of prior for
K—the covariance of the coefficient for the spatio-temporal random process—did not appear
to have a major impact on model fit. It is usually desirable in a data analysis that results
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should not change drastically with the choice of prior. The independence prior represents the
simplest possibility, and avoids computation needed for other choices. We also found that a
high dimensional use of the bisquare basis without adequate dimension reduction led to poor
MCMC mixing. Taking the spatial radius term in the bisquare basis as a function of the
geography—the 0.05 quantile of pairwise distances between knot points—appeared to be a
reasonable choice, allowing each point in the geography to interact with multiple knot points.
The model produced estimates on the source support geographies (counties) which were very
close to the direct estimates. We have observed similarly good performance in estimating a
source support when that particular support was left out of the training set (those results were
not shown here). The model was also generally able to capture trends of direct estimates on
the target support of congressional districts, but not as well as on the source supports. Further
investigation of congressional district results is warranted as improvements may be possible.

We are currently in the process of completing the R package for public release. Details on
the software and its use will be published in the near future.
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Figure 1: County-level ACS data for median household income in the year 2013. The left
column shows direct estimates and the right column displays SDs. The first, second, and third
rows correspond to 1-year, 3-year, and 5-year period estimates, respectively.
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Table 2: Model selection by DIC.

Prior rspace τs Eigenvalue % DIC

1 IND 250 0.5 60 -23213.99

2 0.5 75 -28011.33

3 0.5 90 -32298.14

4 1.0 60 -25167.15

5 1.0 75 -29415.06

6 1.0 90 -33951.35

7 500 0.5 60 -23747.65

8 0.5 75 -29870.56

9 0.5 90 -32989.99

10 1.0 60 -23535.65

11 1.0 75 -30653.63

12 1.0 90 -34533.95

13 SP 250 0.5 60 -23213.42

14 0.5 75 -28001.35

15 0.5 90 -32235.30

16 1.0 60 -25167.26

17 1.0 75 -29425.25

18 1.0 90 -33918.53

19 500 0.5 60 -23745.41

20 0.5 75 -29853.79

21 0.5 90 -32799.24

22 1.0 60 -23536.62

23 1.0 75 -30652.96

24 1.0 90 -34453.51

25 RW 250 0.5 60 -23208.09

26 0.5 75 -27994.73

27 0.5 90 -32306.21

28 1.0 60 -25165.68

29 1.0 75 -29407.43

30 1.0 90 -33903.14

31 500 0.5 60 -23738.00

32 0.5 75 -29845.44

33 0.5 90 -33104.12

34 1.0 60 -23533.74

35 1.0 75 -30652.96

36 1.0 90 -34465.37
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(a) Counties, 5-year period. (b) Congressional Districts, 1-year period.

Figure 7: Scatter plots of 2015 direct ACS estimates versus estimates based on the posterior

mean of E(Y
(ℓ)
t (A)). Sample correlation between the two sets of estimates in (a) is 0.9814, while

in (b) the correlation 0.8295.

(a) Counties, 5-year period. (b) Congressional Districts, 1-year period.

Figure 8: Plot of 2015 direct ACS estimates versus estimates based on the posterior mean of

E(Y
(ℓ)
t (A)). Locations are ordered by direct estimate from smallest to largest.
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