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Abstract

Overdispersion is commonly encountered in the analysis of categorical and count data.
When it occurs, standard regression models may not adequately explain variability ob-
served in the data. Finite mixture distributions arise in sampling a heterogeneous pop-
ulation, and data drawn from such a population will exhibit extra variability relative to
any single subpopulation. The Mixture Link binomial distribution was recently developed
to account for such heterogeneity in a generalized linear model setting. This model is
completely likelihood-based, and maintains a link between the regression function and the
overall mixture mean by assuming a certain random effects structure on the set representing
enforcement of the link. This paper first presents an illustrative example in a heterogeneous
population, comparing binomial regression with a binomial finite mixture of regressions and
Mixture Link regression. We then compare the three models in a Bayesian setting using a
classical dataset studying chromosome aberrations in atomic bomb survivors. The benefits
of acknowledging the extra variation are seen through improved residual plots and widened
prediction intervals. When regression on the overall mean is of interest and the hetero-
geneity is considered a nuisance, Mixture Link may be preferred over a finite mixture of
regressions because only one regression function must be specified.
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1. Introduction

In a binomial regression setting, we observe T' € {0,1,...,m} successes for some
event of interest, out of m prescribed trials, and a covariate € R? which is
associated with the probability of a success for a trial. In this “grouped” binomial
setting, a single covariate value is observed for the m trials. A typical but often
overly simple assumption is that T follows a binomial distribution f(¢t | m,p) =
(T)pt(l — p)™~ !, notated by T ~ Bin(m,p), with p = G(x”3). The function
G : R — [0,1] is called an inverse link in the Generalized Linear Model (GLM)
literature (McCulloch et al., 2008). We make use of both logit and probit links in
this paper. B € R? is a vector of coefficients for the linear regression function a’ 8.
In a typical data analysis, we observe {(T;,m;, x;) : i = 1,...,n} and assume

T; ind Bin(m;,p;), where p; = G(:L'Z-Tf)'). (1)

A problem commonly encountered with this model is overdispersion, which can
generally be said to occur when a given statistical model can not capture the
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variability observed in the data. Specifically under model (1), E(7;) = p; and
Var(7T;) = m;pi(1 — p;), so that the variance is directly a function of the success
probability. In analysis of real data, this can be a serious restriction.

Morel and Neerchal (2012) give an overview of some established approaches to
handle overdispersion in analysis of binomial and categorical data. One approach
is to generalize the simple binomial likelihood by assuming the presence of latent
random variables. beta-binomial (Otake and Prentice, 1984), zero-inflated binomial
(Hall, 2000), and random-clumped binomial (Morel and Nagaraj, 1993) models are
all obtained in this way. The class of Generalized Linear Mixed Models is ob-
tained by placing random effects into the regression function (McCulloch et al.,
2008). Quasi-likelihood methods extend the likelihood in ways that do not yield
a formal likelihood (i.e. random variables cannot be drawn from them), but allow
the regression to be studied. A simple quasi-likelihood is obtained from placing a
dispersion multiplier to the variance (Agresti, 2002, Section 4.7). Generalized Esti-
mating Equations (GEE) represents a more sophisticated quasi-likelihood method;
in the setting of nested data, an analyst assumes a “working” correlation structure
for observations within a subject (Hardin and Hilbe, 2012).

In this paper, we focus on the Mixture Link binomial model proposed in Raim
and Neerchal (2013) and Raim (2014). Mixture Link supposes that there are J
latent subpopulations with potentially different regression functions, just as in a
finite mixture of regressions (Frithwirth-Schnatter, 2006, Section 9.4). However,
unlike the finite mixture of regressions, Mixture Link treats the multiple regression
functions as a nuisance and seeks only to model a single regression function for the
overall probability of success of the entire (mixed) population. In this sense, Mix-
ture Link leaves less opportunity for model misspecification and allows for a more
parsimonious model. Whether the J individual regression functions are of interest
or are a nuisance is problem specific. Mixture Link is fully likelihood-based, and
can be considered an alternative to beta-binomial and random-clumped binomial
for modeling overdispersion in the basic binomial regression setting. However, Mix-
ture Link has proven to be far more computationally challenging. For example,
evaluation of the Mixture Link density requires numerical evaluation of multiple
(univariate) integrals. Also, the likelihood appears to be not differentiable in some
parts of the parameter space.

This paper explores Bayesian analysis for the Mixture Link model. The model
does not appear to permit conjugate priors for closed form Gibbs sampling, so we
make use of a basic Markov Chain Monte Carlo (MCMC) sampler. Bayesian com-
putation helps to alleviate some of the challenges faced in frequentist analysis of
Mixture Link. The results are compared to standard binomial regression and the
finite mixture of regressions, both in a Bayesian setting, using a classical dataset
studying chromosome aberrations in atomic bomb survivors. The benefits of cap-
turing overdispersion relative to the simple binomial regression are readily seen
through improved model fit and appropriately widened prediction intervals. Note
that

The rest of the paper proceeds as follows. Section 2 recalls the Mixture Link and
finite mixture of regression models, and gives an illustrative example of binomial
regression in a mixed population. Section 3 presents details on Bayesian compu-
tation for the three models: binomial regression, finite mixture of binomials, and
Mixture Link. Analysis of the chromosome aberration dataset is compared among
the three models in Section 4. Finally, Section 5 gives concluding remarks.



2. Regression on the Mean of a Finite Mixture

We will first recall the binomial finite mixture of regressions model. Suppose there
are J possible regression functions in our population of interest, 2T, . 2TBW)
so that the probability of a success is determined by G(z”BY) in proportion

m; of the population, for j = 1,...,J. Let Z;, for ¢ = 1,...,n, be discrete

random variables which take on value j with probability 7;, notated as Z; i

Discrete(1,...,J;m) with 7w = (71, ..., 7). The finite mixture of regressions model
can be wrltten as

ES Bin(m;, G(x! B%Y)).
When the Z; are not observed, the likelihood is
Lo - T1{> (1) [eteroon] " [1 - claram]™
i=1 | j=1 "\t Z Z 7

with & = (BW),...,8Y) 7,... m;_1) typically taken to be unknown parameters
in a data analysis. Note that 75 =1 — Z}]:_f 7j, and is therefore redundant. The
overall success probability of a single trial is

J
E(Ti/m; | @) =Y mG(x"
j=1

7

In the rest of the paper, we will use “BinMix” as a shorthand for the the binomial
finite mixture of regressions model, and “BinMixJx” to refer to BinMix with J = z.

Mixture Link Distribution. The Mixture Link distribution starts with a similar
assumption of a J component finite mixture,

J
ind P
T ~ f t | mr“ Zﬂ_ ( >'LL’LJ 1 — sz)mt tz,

7j=1
where @ = (my,...,7;) is an element in the probability simplex S” in R’, and
i = (i1, ..., pig) is an element in the unit cube [0,1]7. The mixture success

probability for a single trial E(T;/m;) = p! 7 is linked to a regression @ 3 through
an inverse link function G, as in the traditional GLM framework.! The quantity
,uiTTr is a composite parameter which does not appear explicitly in the likelihood,
so special machinery is needed to enforce the link. Consider the set

Alz;, B,m) = {p € [0,1) : p'm = Gz B)},

which is exactly the set of u; which honors the link for a given G(x!'3) and .
Mixture Link is formulated by decomposing A(x;, 3, 7) into its convex hull,

A, B,m) = { fngw Aesh = {vOxiaesh],
(=1

"We currently assume a linear regression function for simplicity.



(4) (4)

where V@ is a J x k; matrix with the vertices v, ,...,v;  as columns. By drawing

A0 g Dirichlety, (), p; = V@OX® may be regarded as a random effect drawn
from A(x;, B, 7). We therefore write Mixture Link as a hierarchy

T; | Hi, ™ i'Il'('i BinMiX(mi7 Hi, 7‘-)7

p; = VOO,

v = (vii) 'vl(ci)) are vertices of A(x;, 3, ),
A0 Dirichlety, (&, ..., k).

In the last stage, a Symmetric Dirichlet assumption constrains all dimensions to
share the same k parameter. The density for a typical observation can then be
written as

£t |m.6) = ()Zm [t =y ) du, e

where f,r, is the density of va. The notation vf denotes the jth row of the
J-

matrix of vertices V. The density is parameterized by 8 = (3,7, k), with 7 € &/
and k > 0. In the case of no regression, when G(cciT,B) =pfori=1,...,n, we may
take @ = (p,m, k) with p € [0,1].

Beta Approximation to the Density. A simple closed form for the density
fu7 is not generally available (Provost and Cheong, 2000), which makes (2) difficult
j.

to compute efficiently. Raim (2014) observes through an empirical study that (2) can
be well-approximated by replacing f, T with a moment-matched beta distribution,

for j =1,...,J, which has been shlfted and scaled to have the same support. The
moment—matched density is readily computed in statistical software packages. It is
obtained as the density of Bf = (u; — ¢;)B; + {;, where ({;,u;) is the support of
fvij, Bj ~ Beta(aj, b;), and

T — 2\ —2 _ B ~
aj = (v;. — ¢;)° ;.05 = (0, uj =0 U= b, —a, (U Y
J J- J k2(1 + k‘/{) uj — E] uj — £]7 J 7 ﬂ] — EJ .
Using the approximation, the density for a typical observation can be written as
m—t
f(t|m,0)= < )Zﬂ']/ (1—w 'fBj(w)dw, (3)

which is much simpler to compute numerically than (2). The approximated Mixture
Link distribution can now be written as

E ‘ M, T i%i BlanX(m’Lv M, 71'),
pij = (uig — i) Bij + bij,  j=1,...,J
Bij ~ Beta(aij,bij),

with a;j, b5, 4;j, u;; computed from V@ for the ith observation in the same way
aj,b;, £;,u; are computed from V', as described previously.



In this paper, we will make use of the beta approximated Mixture Link distribu-
tion only. Suppose random variable 7" is drawn from Mixture Link based on m trials
with mixed probability of success linked to &’ 3 through inverse link function G.
We will write T' ~ MixLink j(m, G(x” 3), 7, k), and use the shorthand “MixLink”
or “MixLinkJx” to refer to this model.

Illustrative Example. The following example illustrates the use of BinMix and
Mixture Link in the presence of a mixed population. Consider drawing

7, ind Bin[50, p1(z;)]  w.p. m = 0.1,
' Bin[50, p2(z;)]  w.p. e = 0.9,

fori=1,..., 200, where

pi(z) =Gl +2x), pe(r)=G0+0.1z), p(x)=mip(x)+ mous(z).

The logit link is assumed throughout this example, so that G(z) = 1/(1 + e~ )
represents the CDF of the logistic distribution. The covariate x; is drawn randomly
from a normal distribution with mean 0.5 and variance 4. Figure la shows the
generated data along with the subpopulation mean functions p;(x), pe(x), and the
mixed mean function p(x). Fitting logistic regression to this data using maximum
likelihood results in the estimates shown in Table 1a.? The resulting mean function
is plotted in Figure 1b and appears to be a good estimate of the true mean.

However, there is a lack-of-fit with the logistic regression model. To see this we
consider the randomized quantile residuals proposed by Dunn and Smyth (1996),
which can be used with non-standard models such as finite mixtures. Randomized
quantile residuals are based on the CDF transformation, and are expected to behave
as a draw from N(0, 1) under an adequately fitting model. For independently drawn
yi, the residuals are computed as e; = ®~1{u;}, where

u; 2 Uniform(a;, b;), a;= h&)l F(y;—e|0), and b= F(y; | 6);
[

F(y; | 8) represents the CDF of y; under the proposed model and ®~1(-) represents
the quantile function of N(0, 1).

Figures 2a and 2d plot the quantile residuals from logistic regression applied
to the example data. There are a number of observations with large residual val-
ues which are not well-explained by the model. These presumably correspond to
observations generated from (), since the estimated mean is not far from pa(z).

Next we consider fitting a finite mixture of J = 2 logistic regressions. Table 1b
gives the resulting estimates and Figure 1c displays the estimated mean function.
With the correct model, we can now recognize that there are the two groups with
distinct regressions influencing their responses. Figures 2b and 2e show the corre-
sponding quantile residuals; the model fit now appears to be adequate, as we would
anticipate with the true model at hand.

Finally, we consider fitting the MixLink with J = 2 mixture components. Ta-
ble 1c gives the estimates and Figure 1d shows the estimated mean function. Again
we have captured the overall mean function, although the fit could potentially be
more accurate with a more expressive regression function. Figures 2¢ and 2f show
the corresponding quantile residuals. The MixLink fit is not as good as the (cor-
rect) finite mixture model. For example, the Q-Q plot indicates that some of the

2Note that all models are fit by numerical maximum likelihood in this example.



Table 1: Estimates for example dataset using three models.

(a) Logistic regression.

Estimate SE z-value p-value
Bo | 0.0817 0.0205 3.9890 < 0.0001
B | 0.1191 0.0101 11.8010 < 0.0001
LogLik: -724.77 AIC: 1453.54 BIC: 1460.13
(b) BinMixJ2.
Estimate SE t-value p-value
M 0.0134 0.0220  0.6076  0.5441
BY 0.0901 0.0104  8.6419 < 0.0001
@ 1.1817 0.1468  8.0510 < 0.0001
B 0.9862 0.0990  9.9596 < 0.0001
7r 0.9227 0.0231  40.0027  0.0010
LogLik: -582.95 AIC: 1177.89 BIC: 1197.68
(¢) MixLinkJ2.
Estimate SE t-value p-value
Bo | 0.0140 0.0202 0.6914  0.4901
B | 0.0821 0.0104 7.8600 < 0.0001
™ 0.9274 0.0160 57.9670 < 0.0001
K 0.4727 0.1157 4.0854 < 0.0001
LogLik: -597.50 AIC: 1205.18 BIC: 1221.67

outcomes are expected to be smaller under the fitted model. However, the fit is
substantially better than the logistic regression model. In this example, MixLink is
able to capture the overall mean p(z) while accounting for much of the variability
due to two distinct underlying subpopulations.

3. Bayesian Computation

In this section, we present Bayesian algorithms to fit the three models under consid-
eration: binomial regression, mixture of binomial regressions, and Mixture Link. A
probit link is assumed throughout this section so that the inverse link G is taken to
be @, the CDF of N(0, 1). This assumption admits a closed form Gibbs sampler for
Binomial and BinMix using augmented data approach of Albert and Chib (1993).
It appears that a closed form Gibbs sampler can not be obtained with Mixture Link,
but we may proceed with an off-the-shelf MCMC sampling algorithm.

Binomial Regression. Suppose the observed data follow a probit regression

model,
Yi ind Bin(m;, ®(x] B8)), i=1,...,n. (4)
Let the augmented model be
mi
yi=» Iwe>0), i=1,..n,
=1
Wig indN(miT,B,l), 1=1,....,nand £ =1,...,m,,

B ~N(0,Qp).
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trials which are positive are observed as successes while the rest are observed as
failures. A Gibbs sampler consists of the following steps:

1. Sample B from N(EgATw, ¥g), where X5 = [ATA + 951]_1,

w = (wi,...,wy,),

2. Fori=1,...,n,

(a) Sample w;y, ..
(b) Sample w;y,+1, .-
(—00,0).

Finite Mixture of Binomial Regressions.

be extended to the finite mixture

J
ind

yi ~ Y m;Bin(m;, @(x] BY)),

j=1

w; = (w1, - .

. wi,mi))

1, ® a:{
and A =

1, & :cz

., Wiy, independently from N(z!'3, 1) truncated to (0, o0).
., Wim,; independently from N(z]3,1) truncated to

The augmented data approach can

i=1,...,n. (5)
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Figure 2: Residual plots for example dataset.

Let the augmented model be

m;
yi:ZI(wiZZO), L=1,...,n,

(=1
wip irrgiN(:I:;-FB(ZZ'),I , i=1,...,nand £=1,...,m,,

)
B IN©,9g), j=1,...,J,

2 nd Discrete(1,...,J;m), i=1,...,n,
7 ~ Dirichlet(y1,...,77).

In addition to the continuous trials w;; assumed in the binomial regression model,
we also make use of latent subpopulation labels z; which have been discussed in
Section 2. A Gibbs sampler consists of the following steps:

1. Sample B8Y) from N(E i) ATwj, Bg0)), where T = [ATA; + Q517

def . .
wj:(wal,...,wan]_), where {a1,...,an,} = {i: 2 =j}, and

1ma1 ®w{
A= :
lmanj ®:B£
2. Fori=1,...,n,

(a) Sample wj1, ..., w;,, independently from N(:ciTB(zi), 1) truncated to (0, 00).
(b) Sample wj g, 41, ., W;im, independently from N(m?ﬁ(zi), 1) truncated to
(—00,0).

3. Sample 7 from Dirichlet(> " | I(zi = 1) +v1,..., 2wy I(zi = J) + 7).



Mixture Link Regression. We make use of a basic Random Walk Metropo-
lis sampler, adapted from code in the LearnBayes package in R (R Core Team,
2015).2 To do this, we assume the model

yi "~ MixLink  (my, ®(@? 8), 7, k),
B ““Iq(07(]ﬁ)7
T~ Dirichlet('yl, ce ,’YJ)a

k ~ Gamma(ay, by),

where the the Gamma distribution is parameterized such that E(k) = axby.

4. Bayesian Analysis of Chromosome Aberration Data

Awa et al. (1971) and Sofuni et al. (1978) study the effects of radiation exposure
on chromosome aberrations in survivors of the atomic bombs that were used in
Hiroshima and Nagasaki. A subset of the data is presented in Morel and Neerchal
(2012) as an example of binomial regression with extra variation. This dataset
contains data on n = 648 subjects in Hiroshima. For the ith subject, a chromosome
analysis has been carried out on m; circulating lymphocytes to determine the count
t; out of m; containing chromosome aberrations. As potential covariates, two types
of radiation exposure have been measured: neutron radiation and gamma radiation.
We denote NeuRad; and GamRad; as the respective radiation doses which have been
standardized to have mean 0 and standard deviation 1.

Raim and Neerchal (2013) and Raim (2014) previously used this dataset to il-
lustrate Mixture Link. Those works used numerical maximum likelihood for the
analysis, and simply took the standardized sum of the two radiation doses as the
covariate. In the present work, we looked at several other possible regression func-
tions, which are shown in Table 2. The variable PC1 is based on the first principal
component of a design matrix with unstandardized neutron and gamma radiation
doses as columns. The two principal components are characterized by the linear
combinations ¢; = (0.707,0.707) and ¢y = (—0.707,0.707) with eigenvalues 1.9102
and 0.0898 respectively. Recall that 1/ V2 ~ 0.707, so that ¢; is a normalized ver-
sion of the vector (1,1). Therefore PC1 is simply the sum of the unstandardized
doses, and it captures 1.9102/(1.9102 + 0.0898) = 95.51% of the variation within
this design matrix. Using AIC as a guide for model selection, we select Model 5
which includes an intercept, PC1, and a quadratic term PC172.

With the regression function fixed, we next proceeded to fit seven Bayesian
models: Binomial, BinMix with J = 2, 3,4, and MixLink with J = 2,3,4. Here are
some details regarding the computations:

e For Binomial, we used 50,000 draws from the Gibbs sampler; the first 10,000
were discarded (burn-in) and one out of each remaining 50 was kept as the

final MCMC sample (thinning). The prior variance for 8 was taken to be
Q3 = 1000 - T.

e For BinMix, we took 100,000 draws from the Gibbs sampler, discarding the
first 20,000 and keeping one out of each remaining 100. The prior variance for

B was taken to be 23 = 1000 - I and the prior parameter for w was taken to
bey=(1,...,1).

3http://cran.r-project.org/web/packages/LearnBayes
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Table 2: Comparison of seven probit regression models fitted using maximum
likelihood.

Model LogLik AIC
1| -1.6550 + 0.3685 GamRad + 0.2480 NeuRad - 0.0812 -1800.79 3613.58
GamRad"2 - 0.0232 NeuRad"2 - 0.0399 GamRad*NeuRad
2 | -1.6582 + 0.4678 GamRad + 0.1327 NeuRad - 0.1372 -1806.33 3620.66
GamRad "2
3| -1.7504 + 0.2539 GamRad + 0.1255 NeuRad -1965.60 3937.20
4 | -1.7504 + 0.3725 TotalRad -1966.95 3937.89
5] -1.6591 + 0.4340 PC1 - 0.0704 PC1°2 -1803.85 3613.69
6 | -1.7504 + 0.2657 PC1 -1973.36 3950.72
7| -1.6626 + 0.5922 TotalRad - 0.1330 TotalRad~2 -1809.57 3625.15

e For MixLink, we took 200,000 draws from the Metropolis sampler, discard-
ing the first 50,000 and keeping one out of the remaining 300. The hy-
perparameters were taken to be Qg = 1000 - I, v = (1,...,1), ax = 1
and b, = 1/10. The sampler produced draws ¥ = (¥1,99,93) € R/,
where 91 € R%, 95 € R/7!, and ¥3 € R. These were transformed to
the appropriate parameter space by applying the transformations 8 = 9,
7w = mlogit !(d;), and k = e”3. Notice that the multinomial logit function
mlogit(w) = (log(my/7y),...,log(m;_1/m;)) is a bijection from S to R/~
A starting value for MCMC was found by Laplace approximation using code
that we extended from the LearnBayes package.

A comparison of Deviance Information Criteria (DIC) from the seven fitted models
is shown in Table 3. We proceed focusing on the models Binomial, BinMix with
J = 3, and MixLink with J = 2; further improvements to DIC are possible by
continuing to increase J, but they appear to be diminishing.

To provide diagnostic checks on MCMC convergence, we examined trace plots,
autocorrelation function (ACF) plots, and histograms for each parameter of the
three selected models; most of the plots are not shown due to space restrictions.
Diagnostics for the Binomial MCMC showed good mixing, low autocorrelation, and
normal marginals. For BinMixJ3 and MixLinkJ2, examples of the most worrisome
diagnostic plots are shown in Figure 3. Non-negligible autocorrelation is present in
the saved draws for several parameters. There are signs of slight departure from
normality in several parameters in BinMixJ3. The trace plot for x in MixLinkJ2
appears to show slower mixing than other parameters. These issues do not appear
to be serious, but more draws and a higher thinning rate might further improve the
diagnostics.

Table 4 summarizes the posterior draws for each of the three models. For Bino-
mial, Table 4a shows very similar results as in Table 2 where maximum likelihood
was used. MixLinkJ2, shown in Table 4c, gives similar coefficients for the regression;
the standard errors are larger than in Binomial, but the credible intervals are a bit
narrower. A summary plot for BinMixJ3 is shown in Table 4b for completeness.

Consequences of ignoring overdispersion are more clear when moving beyond
estimates of the parameters. To see this, we compute randomized quantile resid-
uals based on the posterior distribution and prediction intervals based on the
posterior predictive distribution. Residuals are computed from the posterior as



Table 3: Comparison of Bayesian models for Chromosome Aberration dataset.
“Elapsed” reports the time required for MCMC computation on a Linux workstation
with an Intel Core i7-2600 quad core CPU operating at 3.40GHz. “Accept” reports
the proportion of accepted Metropolis proposals.

Model J DIC Elapsed Accept
Binomial - 3613.459 Oh 16m -
BinMix 2 3114.298 2h 44m -—=
BinMix 3 2887.584 2h 48m -—=
BinMix 4 2866.922 3h 16m -
MixLink 2 2870.340 6h 07m 0.1459
MixLink 3 2863.231 5h 59m 0.1626
MixLink 4 2853.754 8h 27m 0.1601

e =% SR @fl{ugr)}, where

uf!) % Uniform(a(”57). ) =Tim F(y; — = 67). 5 = F(y: | 87).
Here, R is the number of draws obtained from the posterior. For each ¢ = 1,...,n,

the posterior predictive distribution for the ith observation is computed by drawing
yz(r) nd MixLink j(m;, ®(x! 87)), 7 1)),

forr =1,..., R. A prediction g; can be obtained from the mean of yl(l), e yER), and

a 95% prediction interval can be obtained by taking the 0.025 and 0.975 quantiles.

Figure 4 shows Q-Q plots of the residuals and plots of the residuals versus the
predicted proportions g;/m;. There is a clear lack-of-fit in Binomial, indicated by
the presence of residuals well outside of the (—3,3) range anticipated under the
standard normal assumption. The fit of BinMixJ3 and MixLinkJ2 appears to be
comparable; both are significantly improved over Binomial. However, there is a
clear pattern in all models’ residuals showing that smaller ¢;/m; tend to have larger
residuals. This may be an indication that we are missing an important covariate
which was not available in the Morel and Neerchal (2012) version of the data.

Figure 5 plots predictions and prediction intervals against the variable PC1. The
predictions themselves are not dramatically different between the three models, but
prediction intervals for Binomial are too narrow. These intervals do not reflect the
large variability that is especially apparent for larger values of PC1. Prediction
intervals for BinMixJ3 and MixLinkJ2 are appropriately wider.

It is interesting that J = 3 mixture components appear to be needed for BinMix
to arrive at a fit comparable to MixLinkJ2. This was not the case in our example
from Section 2, where BinMix was the true data generating model. Now that we
are in a real data analysis setting, the parsimony of MixLink over BinMix may be
an advantage, as J regression models must be specified for BinMix but only one
must be specified for MixLink.

5. Conclusions

In this paper, we compared binomial regression, binomial finite mixture of regres-
sions, and the recently proposed Mixture Link binomial regression model. First
we presented an illustrative example using data simulated from the finite mixture.
Ignoring the mixture led to variation which could not be expressed by the model,
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tion analysis.
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Figure 4: Posterior quantile residuals from chromosome aberration data.



Table 4: Summary of posterior draws for Bayesian models. The columns represent
the posterior mean, standard deviation, and 2.5%, 50%, and 97.5% percentiles of
the posterior draws which were not discarded due to burning or thinning.

(a) Binomial.

‘ mean sd 2.5% 50% 97.5%

Intercept | -1.659011 0.011255 -1.681000 -1.658888 -1.637236

PC1 0.433437 0.010920 0.413804 0.433285 0.455346

PC172 -0.070334 0.003781 -0.077804 -0.070254 -0.063513

(b) BinMixJ3.
mean sd 2.5% 50% 97.5%
1:Intercept | -1.627399 0.032854 -1.687566 -1.628707 -1.561228
1:PC1 0.427218 0.020600 0.389729 0.427630 0.467896
1:PC172 -0.065063 0.007204 -0.078454 -0.064791 -0.051752
2:Intercept | -2.087556 0.059700 -2.216716 -2.084888 -1.980454
2:PC1 0.423070 0.053652 0.324533 0.419214 0.537476
2:PC172 -0.097401 0.015693 -0.130326 -0.097630 -0.066147
3:Intercept | -1.205755 0.038939 -1.280563 -1.207473 -1.127679
3:PC1 0.574393 0.037490 0.500261 0.573859 0.650442
3:PC172 -0.097022 0.013552 -0.124498 -0.096995 -0.069645
Pi1 0.533819 0.046071 0.440920 0.533025 0.620678
Pi2 0.329537 0.047543 0.245021 0.328920 0.425162
Pi3 0.136644 0.030366 0.081797 0.134373 0.199584
(C) MixLinkJ2.

mean sd 2.5% 50% 97.5%

Intercept | -1.650165 0.021010 -1.689014 -1.651180 -1.610766

PC1 0.448817 0.018791 0.415617 0.448000 0.488959

PC1~2 -0.075307 0.007872 -0.090360 -0.075550 -0.060539

Pi1l 0.334374 0.017324 0.302826 0.332676 0.368576

Pi2 0.665626 0.017324 0.631424 0.667324 0.697174

kappa 1.601981 0.215080 1.204079 1.585946 2.031749

resulting lack-of-fit was highlighted using quantile residuals, whose computation in-
volves the CDF of the proposed model. Mixture Link was able to capture much
of the variation in the example data. We also presented a Bayesian analysis of
a classical chromosome aberration dataset. Prediction intervals were conveniently
computed in the Bayesian setting. Binomial regression was unable to express the
apparent uncertainty in predictions, but Mixture Link was able to provide suitably
wider intervals. Interestingly, Mixture Link with J = 2 mixture components fit
comparably to a finite mixture of J = 3 binomial regressions; we presume this is
because Mixture Link is more parsimonious and offers less opportunity to misspecify
regression functions.

The Bayesian framework offers a certain convenience for the Mixture Link dis-
tribution while some difficulties remain in using frequentist approaches such as
maximum likelihood. With code for the density function available (Raim et al.,
2015), it was a relatively simple matter to program the likelihood and plug it into
an MCMC sampler. It is worth noting that the diagnostics for Mixture Link with
J = 3 appeared much worse than the J = 2 model. Namely, the 7 parameters
showed evidence of poor mixing, high autocorrelation, and non-normality. The di-
agnostics might improve by running longer MCMC chains. However, it may be
worthwhile to investigate other MCMC samplers for improved efficiency.

Note that Raim and Neerchal (2013) found a beta-binomial regression model
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Figure 5: Predictions and 95% intervals from posterior predictive distribution.
The blue curve in the center marks predictions, and the surrounding brown curves
represent upper and lower (pointwise) intervals.

to fit equally as well as Mixture Link to the chromosome aberration dataset using
numerical maximum likelihood. The beta-binomial model was permitted to have a
second regression on its dispersion parameter, giving it an advantage. Likelihood-
based models such as beta-binomial and random-clumped binomial currently have
an advantange over Mixture Link because computations are relatively much simpler.
However, each of these models addresses a different potential cause for overdisper-
sion. Despite its increased complexity, Mixture Link may be a more appropriate
alternative in some problems.

Acknowledgements

Thanks to Tommy Wright and Kimberly Sellers, both in the Center for Statistical
Research & Methodology at the U.S. Census Bureau, for reviewing this manuscript.



References

A. Agresti. Categorical Data Analysis. Wiley-Interscience, 2nd edition, 2002.

J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response
data. Journal of the American Statistical Association, 88(422):669-679, 1993.

A. Awa, T. Honda, T. Sofuni, S. Neriishi, M. Yoshida, and T. Matsui. Chromosome-
aberration frequency in cultured blood-cells in relation to radiation dose of A-
bomb survivor. The Lancet, 298(7730):903-905, 1971.

P. K. Dunn and G. K. Smyth. Randomized quantile residuals. Journal of Compu-
tational and Graphical Statistics, 5(3):236-244, 1996.

S. Frithwirth-Schnatter. Finite Mizture and Markov Switching Models. Springer,
2006.

D. B. Hall. Zero-inflated poisson and binomial regression with random effects: A
case study. Biometrics, 56(4):1030-1039, 2000.

J. W. Hardin and J. M. Hilbe. Generalized Estimating Fquations. Chapman and
Hall/CRC, 2nd edition, 2012.

C. E. McCulloch, S. R. Searle, and J. M. Neuhaus. Generalized, Linear, and Mized
Models, volume 2. Wiley-Interscience, 2nd edition, 2008.

J. G. Morel and N. K. Nagaraj. A finite mixture distribution for modelling multi-
nomial extra variation. Biometrika, 80(2):363-371, 1993.

J. G. Morel and N. K. Neerchal. Quverdispersion Models in SAS. SAS Institute,
2012.

M. Otake and R. L. Prentice. The analysis of chromosomally aberrant cells based
on beta-binomial distribution. Radiation Research, 98(3):456-470, 1984.

S. B. Provost and Y.-H. Cheong. On the distribution of linear combinations of the
components of a dirichlet random vector. Canadian Journal of Statistics, 28(2):
417-425, 2000.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2015.

A. M. Raim. Computational Methods in Finite Mixtures using Approximate Infor-
mation and Regression Linked to the Mixture Mean. Ph.D. Thesis, Department
of Mathematics and Statistics, University of Maryland, Baltimore County, 2014.

A. M. Raim and N. K. Neerchal. Modeling overdispersion in binomial data with
regression linked to a finite mixture probability of success. In JSM Proceedings,
Statistical Computing Section. Alexandria, VA: American Statistical Association,
pages 2760-2774, 2013.

A. M. Raim, N. K. Neerchal, and J. G. Morel. Modeling overdispersion in R.
Technical Report HPCF-2015-1, UMBC High Performance Computing Facility,
University of Maryland, Baltimore County, 2015.

T. Sofuni, T. Honda, M. Itoh, S. Neriishi, and M. Otake. Relationship between
the radiation dose and chromosome aberrations in atomic bomb survivors of Hi-
roshima and Nagasaki. Journal of Radiation Research, 19(2):126-140, 1978.



	Introduction
	Regression on the Mean of a Finite Mixture
	Bayesian Computation
	Bayesian Analysis of Chromosome Aberration Data
	Conclusions

