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Abstract
Count data commonly arise as a simple count of events in a fixed interval or the number of successes

for a set of categories in a fixed number of trials. The Poisson, binomial and multinomial distributions
are traditionally used to model such data, where the appropriate choice depends on the data generating
mechanism. In practice, count data often exhibit over- or under-dispersion where variability observed in the
data cannot be adequately captured via these standard distributions. The Conway-Maxwell (COM)-Poisson
distribution supports such flexibility relative to the Poisson distribution for modeling simple count data.
Shmueli et. al. (2005) present a COM-binomial distribution that permits flexibility in modeling binomial
data, based on COM-Poisson conditional probabilities. We formally extend the COM-binomial distribution
to the setting of more than two categories, thus defining a COM-multinomial distribution. We describe
properties and illustrate the flexible characteristics of this distribution.
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1. Introduction

The Poisson, binomial and multinomial distributions are commonly used for modeling categorical
data where either a simple count is observed in a fixed interval, or a number of successes is observed
in a fixed number of trials. The nature of the data generating mechanism – specifically, the support
and dimension of the count outcome – suggests the choice of distribution. Each of these standard
distributions has a theoretically defined mean-variance relationship that depends only on the rate
parameter for the Poisson distribution, and the number of trials and probability parameters for the
binomial and multinomial distributions. However, count data often exhibit variability that violates
the restrictive mean-variance assumptions of the Poisson, binomial and multinomial distribution.

There are a variety of distributions that provide flexibility via additional dispersion parameters
to adequately capture variability that is inconsistent with these traditional distributions. The nega-
tive binomial distribution (i.e. Poisson-gamma compound distribution) and the Poisson-lognormal
mixture model are two commonly used alternatives to the Poisson distribution that allow exclu-
sively for over-dispersion. Models that allow exclusively for under-dispersion relative to the Pois-
son distribution are less common (Sellers and Morris, 2017). The generalized Poisson distribution
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(Consul and Jain, 1973) and the Conway-Maxwell-Poisson distribution (Conway and Maxwell,
1962; Shmueli et al., 2005) are two-parameter generalizations of the Poisson distribution that can
flexibly support both over- and under-dispersion for modeling simple count data. Similarly, the
beta-binomial compound distribution and logistic-normal mixture model are commonly used alter-
natives to the binomial distribution that allow exclusively for over-dispersion relative to the bino-
mial distribution; while the Conway-Maxwell-binomial distribution supports versatility for model-
ing both over- and under-dispersed binomial data (Shmueli et al., 2005). The Dirichlet-multinomial
compound distribution (Mosimann, 1962) and the multinomial cluster model (Morel and Nagaraj,
1993) can account for over-dispersion relative to the multinomial distribution. We formalize a
Conway-Maxwell extension of the multinomial distribution – analogous to the formulation of the
Conway-Maxwell-binomial distribution – to flexibly model both over- and under-dispersed cate-
gorical data with a fixed number of trials and more than two categories. We describe properties
of this Conway-Maxwell-multinomial distribution and illustrate its behavior for varying degrees of
dispersion relative to the multinomial distribution.

The rest of the paper proceeds as follows. Section 2 reviews basic properties of the Conway-
Maxwell-Poisson and Conway-Maxwell-binomial distributions. Section 3 introduces the Conway-
Maxwell-multinomial distribution and describes properties: the probability mass function, special
cases, moments, generating functions, marginal and conditional distributions, and a tractable Gibbs
sampler for random value generation. Section 4 concludes the paper.

2. Conway-Maxwell Extensions of the Poisson and Binomial Distributions

2.1 Conway-Maxwell-Poisson Distribution

The Conway-Maxwell-Poisson (COM-Poisson or CMP) distribution is a flexible distribution for
count data that allows for over- or under-dispersion (Conway and Maxwell, 1962; Shmueli et al.,
2005). The CMP probability mass function (pmf) for a single observation takes the form

P(Y = y | λ, ν) =
λy

(y!)νZ(λ, ν)
, y = 0, 1, 2, . . .

for a random variable Y , where Z(λ, ν) =
∑∞

y=0
λy

(y!)ν is a normalizing constant. In this setting,
λ = E(Y ν), where ν ≥ 0 is the dispersion parameter such that ν = 1 denotes equi-dispersion,
ν > 1 signifies under-dispersion, and ν < 1 signifies over-dispersion. The moments of the CMP
distribution are not of closed form. For example,

µ = E(Y ) =
∞∑
y=0

yλy

(y!)νZ(λ, ν)
= λ

∂ logZ(λ, ν)

∂λ
.

However, Shmueli et al. (2005) note that assuming an asymptotic approximation for Z(λ, ν) leads
to a close approximation for the mean:

E(Y ) ≈ λ1/ν − ν − 1

2ν
for ν ≤ 1 or λ > 10ν .



The CMP distribution includes three well-known distributions as special cases: Poisson with rate
parameter λ (ν = 1); geometric with success probability 1− λ (ν = 0, λ < 1); and Bernoulli with
success probability λ

1+λ (ν → ∞). See Shmueli et al. (2005) and Sellers et al. (2012) for details
regarding this distribution.

2.2 Conway-Maxwell-Binomial Distribution

The Conway-Maxwell-binomial (COM-binomial or CMB) distribution is a flexible generaliza-
tion of the binomial distribution that captures over- and under-dispersion (Kadane, 2016). A ran-
dom variable follows the CMB distribution (alternatively termed the Conway-Maxwell-Poisson-
binomial distribution in Shmueli et al. (2005) and Borges et al. (2014)) according to pmf

P(Y = y) =

(
m
y

)ν
py (1− p)m−y

C(p, ν)
, y = 0, 1, . . . ,m, (1)

where C(p, ν) =
∑m

y=0

(
m
y

)ν
py (1− p)m−y is the normalizing constant, m ∈ N, ν ∈ R and p ∈

(0, 1). This distribution captures over- and under-dispersion relative to the binomial distribution
when ν < 1 and ν > 1, respectively, and reduces to the usual binomial distribution for ν = 1.
For under-dispersion as ν → ∞, the CMB distribution concentrates at m2 for even m or

⌈
m
2

⌉
and⌊

m
2

⌋
for odd m. Conversely, for over-dispersion as ν → −∞, the CMB distribution concentrates

at 0 or m. Shmueli et al. (2005) recognize that the CMB distribution can be obtained as the sum of
dependent Bernoulli random variables (Z1, . . . Zm) with pmf

P(Z1 = z1, . . . , Zm = zm) ∝
(
m

z

)ν−1

pz (1− p)m−z ,

where z =
∑m

i=1 zi. The CMB distribution allows for negatively and positively correlated (z1, . . . , zm)
corresponding to ν > 1 and ν < 1, respectively.1 The extreme cases of the CMB distribution,
ν → −∞ and ν → ∞, reflect perfect postive and negative correlation of the Bernoulli compo-
nents, respectively (Borges et al., 2014; Kadane, 2016).

Shmueli et al. (2005) show that the CMB distribution can be derived as an extension of the CMP
distribution. Consider two independent random variablesX ∼ CMP(λx, ν) and Y ∼ CMP(λy, ν).
Shmueli et al. (2005) find the distribution derived by conditioning X on the sum X + Y = m

results in the CMB
(
m, λx

λx+λy
, ν
)

with pmf

P(X = x | X + Y = x+ y) ∝
(
x+ y

x

)ν ( λx
λx + λy

)x( λy
λx + λy

)y
,

in terms of the underlying CMP variates and parameters where x = 0, 1, . . . and y = 0, 1, . . . . This
result is a natural extension of the relationship between the Poisson and binomial distributions.

1Kadane and Naeshagen (2013) study an application of the CMB distribution that restricts the CMB to only allow
for positive or null correlation of dependent Bernoulli random variables (ν ≤ 1).



Considering a random sample Y1, . . . , Yn ∼ CMB(m, p, ν) with common number of trials
m, Kadane (2016) and Borges et al. (2014) describe exponential family properties and generating
functions of the CMB distribution. The distribution can be written in exponential family form as

P(Y1 = y1, . . . , Yn = yn) ∝
n∏
i=1

(
m

yi

)ν
pyi (1− p)m−yi

= (m!)nν(1− p)nm
n∏
i=1

(
p

1− p

)yi 1

(yi!(m− yi)!)ν

∝ exp

(
n∑
i=1

yi log

(
p

1− p

)
− ν

n∑
i=1

log [yi!(m− yi)!]

)
,

with sufficient statistics
∑n

i=1 yi and
∑n

i=1 log [yi!(m− yi)!]. The probability generating function
of the CMB distribution is

E(tY ) =
1

C(p, ν)

m∑
y=0

ty
(
m

y

)ν
py (1− p)m−y

=
(1− p)m

C(p, ν)

m∑
y=0

(
m

y

)ν ( tp

1− p

)y
= T

(
tp

1− p
, ν

)
/ T

(
p

1− p
, ν

)
, (2)

using C(p, ν) = (1 − p)mT
(

p
1−p , ν

)
where T (w, ν) =

∑m
y=0w

y
(
m
y

)ν . Similarly, the moment
generating function is

E(etY ) = T

(
etp

1− p
, ν

)
/ T

(
p

1− p
, ν

)
. (3)

3. Conway-Maxwell Extension of the Multinomial Distribution

The CMB distribution naturally extends to generalize the multinomial distribution. Define Ωm,k =

{y = (y1, . . . , yk) ∈ Nk :
∑k

j=1 yj = m} as the multinomial sample space based on m trials and
k categories, and

(
m

y1···yk

)
= m!

y1!···yk! as the multinomial coefficient. Recall that there are
(
m+k−1
k−1

)
points in the sample space Ωk,m; see for example Feller (1968, Chapter 2). A random variable
Y = (Y1, · · · , Yk) is distributed according to the Conway-Maxwell-multinomial (CMM) if it has
pmf

P(Y = y | m,p, ν) =
1

C (p, ν)

(
m

y1 · · · yk

)ν k∏
j=1

p
yj
j , y ∈ Ωm,k, (4)



and we will write Y ∼ CMMk(m,p, ν). Here,

C (p, ν) =
∑

y∈Ωm,k

(
m

y1 · · · yk

)ν k∏
j=1

p
yj
j (5)

is the normalizing constant. We derive the CMM pmf using the CMP conditioning approach as
in Shmueli et al. (2005). Suppose Yj ∼ CMP(λj , ν) for independent Yj , j = 1, . . . , k, and let
S =

∑k
j=1 Yj . First, consider the probability distribution of the sum of CMP random variables:

P(S = m) =
∑

y∈Ωm,k

P(Y1 = y1, . . . , Yk = yk)

=
∑

y∈Ωm,k

k∏
j=1

(
λ
yj
j

(yj !)νZ(λj , ν)

)

=
1∏k

j=1 Z(λj , ν)

∑
y∈Ωm,k

∏k
j=1 λ

yj
j(∏k

j=1 yj !
)ν

=

(∑k
j=1 λj

)m
(m!)ν

∏k
j=1 Z(λj , ν)

∑
y∈Ωm,k

(
m!

y1! · · · yk!

)ν k∏
j=1

(
λj∑k
h=1 λh

)yj

=

(∑k
j=1 λj

)m
(m!)ν

∏k
j=1 Z(λj , ν)

∑
y∈Ωm,k

(
m

y1 · · · yk

)ν k∏
j=1

p
yj
j ,

where pj =
λj∑k
h=1 λh

. This result is an extension of the sum-of-Conway-Maxwell-Poissons (sCMP)

class of distributions (Sellers et al., 2017) which allows each CMP component Yj a different pa-
rameter λj . When λ1 = · · · = λk the distribution reduces to the sCMP class of distributions. Next
we obtain the form of the CMM distribution by conditioning Y on the sum S:

P(Y = y | S = m) =
P(Y = y, S = m)

P(S = m)
=

∏k
j=1 P(Yj = yj)

P(S = m)

=

∏k
j=1

[
λ
yj
j / (yj !)

νZ(λj , ν)
]

(
∑k
j=1 λj)

m

(m!)ν
∏k
j=1 Z(λj ,ν)

∑
y∈Ωm,k

(
m

y1···yk

)ν∏k
j=1

(
λj∑k
h=1 λh

)yj
=

1

C (p, ν)

(m!)ν∏k
j=1(yj !)ν

∏k
j=1 λ

yj
j(∑k

j=1 λj

)m
=

1

C (p, ν)

(
m

y1 · · · yk

)ν k∏
j=1

p
yj
j , (6)



where p =
(

λ1∑k
h=1 λh

, . . . , λk∑k
h=1 λh

)
is the set of probabilities.

The CMM distribution can be parameterized in terms of the original probability parameters p
or the baseline odds θ = {θ1, . . . , θk−1} =

{
p1

pk
, . . . ,

pk−1

pk

}
, where the kth category is taken as the

baseline. The baseline odds parameterization relies on the pmf in (6) written as

P(Y = y | m,θ, ν) =
1

T (θ, ν)

(
m

y1 · · · yk

)ν k−1∏
j=1

θ
yj
j ,

where

T (θ, ν) =
∑

y∈Ωm,k

(
m

y1 · · · yk

)ν k−1∏
j=1

θ
yj
j =

C(p, ν)

pmk

is the normalizing constant.

3.1 Special Cases

The CMM distribution results in standard distributions for special cases of the parameters ν and
p: multinomial (ν = 1), discrete uniform on the multinomial sample space (ν = 0 and p1 =
· · · = pk), point masses at the “vertex” points (ν → −∞), and point masses at the “center” points
(ν → ∞). Figure 1 presents a matrix of density plots illustrating special cases for m = 20 and
k = 3; special cases are proven in the general setting. Three sets of p are depicted in Figure 1 to
illustrate the behavior of the CMM distribution with equal and unequal probability parameters. The
ordering of the categories in p is chosen without loss of generality. The simplest and immediately
obvious special case is the multinomial distribution when ν = 1. This case, depicted in the third
row of Figure 1, serves as the baseline for interpreting over- and under-dispersion of the CMM
relative to the multinomial distribution.

For ν = 0 and p1 = · · · = pk, the CMM distribution reduces to a discrete uniform distribution
with the probability of each outcome in the multinomial sample space equal to

(
m+k−1
k−1

)−1
. This

can be seen as follows:

P(Y = y | m,p = (1/k, . . . , 1/k), ν = 0) =

∏k
j=1 (1/k)yj∑

y∈Ωm,k

∏k
j=1 (1/k)yj

=
(1/k)m

(1/k)m
∑

y∈Ωm,k
1

=

(
m+ k − 1

k − 1

)−1

.



p1 = p2 = p3 = 1/3 p = (.8, .1, .1) p = (.6, .3, .1)
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Figure 1: Special cases of the CMM3(m = 20,p, ν) density with varying ν and p. Here, y1 is plotted
on the x-axis and y2 is on the y-axis; y3 = m − y1 − y2 is redundant and is therefore not shown. Darker
squares represent higher probability points in the space. Density values represented by shades of gray are
not consistent across plots.



Without the equality constraint on the probability parameters, the CMM does not reduce to a fa-
miliar form in this special case. For this special case with k = 2 (i.e. the CMB), the CMM density
simplifies to

P(Y1 = y1 | m, p1, ν = 0) =
py1

1 (1− p1)m−y1∑m
y1=0 p

y1
1 (1− p1)m−y1

=
[p1/(1− p1)]y1∑m
y1=0 [p1/(1− p1)]y1

=
θy1

1∑m
y1=0 θ

y1
1

=
θy1

1 (1− θ1)

1− θm+1
1

,

where the last equality follows from the geometric series. However, this result is not easily general-
ized to larger k. Even without a standard form, the second row of Figure 1 illustrates that for ν = 0
(i.e. a dispersion parameter value less than 1) the CMM distribution tends toward the behavior
observed in the extreme case of over-dispersion (ν → −∞).

To describe the CMM density as ν → −∞, we refer to the points mej for j = 1, . . . , k as the
vertex points of the multinomial sample space, where ej is the jth column of a k×k identity matrix.
These vertex points correspond to the outcomes where all trials are assigned to the same category.
For ν → −∞, CMM becomes a distribution on vertex points me1, . . . ,mek with probabilities
proportional to p1, . . . , pk. The multinomial coefficient drives this result because its value at the
vertex points dictates the limiting probabilities. If y 6∈ {me1, . . . ,mek}, then(

m

y1 · · · yk

)
> 1 =⇒

(
m

y1 · · · yk

)ν
→ 0 as ν → −∞

so that

P(Y = y | m,p, ν)→

{
pmj /(p

m
1 + · · ·+ pmk ) if y = mej for j = 1, . . . , k,

0 otherwise,
(7)

as ν → −∞. This behavior is exhibited at ν = −3 form = 20, which can be seen in the first row of
Figure 1. Here we see that the mass is split evenly between the vertex points when p1 = · · · = pk,
but concentrates at points with larger pj’s otherwise.

For ν → ∞, the CMM distribution results in one or more point masses on the points of the
multinomial support which are closest to the center of the sample space (m/k, . . . ,m/k). The
number of these points depends on the divisibility of m by k. Let q and r be integers such that
m = qk+ r with r ∈ {0, 1, . . . , k− 1}. Consider assigning q trials to all k categories, and let each
category have at most one of the remaining r trials. We define the

(
k
r

)
such points of Ωm,k as the

center points, written as

y∗ ∈ Ω∗m,k = {(q + r1, . . . , q + rk) : rj ∈ {0, 1}, r1 + · · ·+ rk = r} .



Similar to the ν → −∞ case, the multinomial coefficient drives this special case because its value
at the center points dictates the limiting probabilities. To see this, let y ∈ Ωm,k \ Ω∗m,k:(

m

y∗1 · · · y∗k

)
>

(
m

y1 · · · yk

)
=⇒

(
m

y∗1 · · · y∗k

)ν
/

(
m

y1 · · · yk

)ν
→∞ as ν →∞,

so that

P(Y = y | m,p, ν)→


p
y1
1 ···p

yk
k∑

y∈Ω∗
m,k

p
y1
1 ···p

yk
k

if y ∈ Ω∗m,k,

0 otherwise,
(8)

as ν → ∞. This behavior is exhibited at ν = 35 for m = 20, shown in the fourth row of Figure
1. In all scenarios varying p, the three center points (7, 7, 6), (7, 6, 7), and (6, 7, 7) constitute all
the density. For a number of trials equally divisible by k = 3, say m = 21, the density would
exhibit a single point mass at (7, 7, 7); however, in this illustration the number of trials m = 20
is not equally divisible by the number of categories k = 3 resulting in

(
3
2

)
= 3 center points. In

the equal probability case, the CMM density is equal at these three center points, but for unequal
probabilities the density at the three points differs according to the probability mass function in (8).

These special cases of CMM suggest that p should not be interpreted as category probabilities
for individual trials, as in the standard multinomial distribution, but as weights which influence
where the probability mass shifts.

3.2 Intermediate Case Examples

Figure 2 presents a matrix of density plots illustrating intermediate cases of ν ∈ {−.25, .25, 4} for
m = 20 and k = 3; special cases ν ∈ {0, 1} are included for reference.2 For the equal p case
shown in column 1 of Figure 2, the areas of highest density progress from concentrating around
the vertex points (ν = −.25) to clustering at the center points (ν = 4) as ν increases. For the
unequal p case shown in columns 2 and 3 of Figure 2, as ν increases to one, the areas of highest
density progressively spread around the vertex point with the largest pj and shift to the traditional
multinomial distribution. As ν increases from one, the areas of highest density begin shifting to
the center points and the clustering tightens as ν becomes large.

2Visit our R Shiny app at https://dsteeg.shinyapps.io/CMMshinyapp to independently explore the
behavior of the CMM distribution for all values of ν,m and p.

https://dsteeg.shinyapps.io/CMMshinyapp
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Figure 2: Intermediate cases of the CMM3(m = 20,p, ν) density with varying ν and p. Here, y1 is plotted
on the x-axis and y2 is on the y-axis; y3 = m − y1 − y2 is redundant and is therefore not shown. Darker
squares represent higher probability points in the space. Density values represented by shades of gray are
not consistent across plots.



3.3 Likelihood in Exponential Family Form

Consider a random sample Y1, . . . ,Yn ∼ CMMk(m,p, ν) with common number of trials m. The
pmf can be written in exponential family form as

P(Y1 = y1, . . . ,Yn = yn | m,p, ν) =
1

C(p, ν)n

n∏
i=1

(
m

yi1 · · · yik

)ν k∏
j=1

p
yij
j

=
1

T (θ, ν)n

n∏
i=1

(
m!∏k
j=1 yij !

)ν k−1∏
j=1

θ
yij
j

= exp


n∑
i=1

k−1∑
j=1

yij log(θj)− ν
n∑
i=1

k∑
j=1

log(yij !)

 ×

exp

{
ν

n∑
i=1

log(m!)− n log (T (θ, ν))

}

∝ exp


k−1∑
j=1

log(θj)S1j − νS2

 ,

with sufficient statistics S1 = (y+1, . . . , y+,k−1) and S2 =
∑n

i=1

∑k
j=1 log(yij !), where y+j =∑n

i=1 yij is the total count in category j. The natural parameters are ν and the set of baseline

category logits, log(θj) = log
(
pj
pk

)
for j = 1, . . . , k − 1. This distributional form of the CMM

is particularly important because exponential family distributions have many properties that are
useful for statistical analysis.

3.4 Moments and Generating Functions

It is useful to consider the properties of the CMM distribution for both the probability and odds
parameterizations. Let p−k = (p1, . . . , pk−1), I be the (k− 1)× (k− 1) the identity matrix, ej be
the jth column of I , 1 be a vector of k − 1 ones, and 1`=j be an indicator function. The transpose
of a vector x is denoted by x>. The expected value for the jth category of a CMM random variable
Y for the odds and probability parameterizations are obtained in (9) and (10), respectively, as

E(Yj) =
1

T (θ, ν)

∑
y∈Ωm,k

yj

(
m

y1 · · · yk

)ν k−1∏
i=1

θyii

=
θj

T (θ, ν)

∂T (θ, ν)

∂θj

= θj
∂ log T (θ, ν)

∂θj
(9)



= θj

[
e>j

(
∂θ

∂p−k

)−1 ∂ log T (θ, ν)

∂p−k

]

= θj

[
e>j
(
p−2
k

(
pkI + p−k1

>))−1 ∂ log T (θ, ν)

∂p−k

]
= θj

[
e>j

(
pkI − pkp−k1>

) ∂ log T (θ, ν)

∂p−k

]
=

pj
pk

[
k−1∑
`=1

(
pk1`=j − p`pk

)∂ log T (θ, ν)

∂p`

]

= pj

[
k−1∑
`=1

(
1`=j − p`

)(m
pk

+
∂ logC(p, ν)

∂p`

)]

= pj

[
m

pk
+
∂ logC(p, ν)

∂pj
− m(1− pk)

pk
−
k−1∑
`=1

p`
∂ logC(p, ν)

∂p`

]

= mpj + pj
∂ logC(p, ν)

∂pj
−
k−1∑
`=1

p`
∂ logC(p, ν)

∂p`
, (10)

for j = 1, . . . , k − 1. The inverse of the matrix p−2
k

(
pkI + p−k1

>) can be obtained using the
Sherman-Morrison matrix identity; e.g., see Meyer (2001, Section 3.8). The expected value for the
kth category is E(Yk) = m−

∑k−1
j=1 E(Yj). For the special case ν = 1, C(p, ν) ≡ 1 for all p gives

∂ logC(p, ν)/∂p` = 0, and (10) reduces to mpj , the multinomial expected value for the count in
category j.

To derive the variance and covariance for categories of a CMM random variable under the odds
parameterization, we find that for two categories j 6= h

E(YjYh) =
1

T (θ, ν)

∑
y∈Ωm,k

yjyh

(
m

y1 · · · yk

)ν k−1∏
i=1

θyii

=
θjθh
T (θ, ν)

∂2 T (θ, ν)

∂θj∂θh

= θjθh

[
∂

∂θj

(
1

T (θ, ν)

∂ T (θ, ν)

∂θh

)]
= θjθh

[
1

T (θ, ν)

∂2 T (θ, ν)

∂θj∂θh
+

1

(T (θ, ν))2

∂ T (θ, ν)

∂θj

∂ T (θ, ν)

∂θh

]
= θjθh

∂2 log T (θ, ν)

∂θj∂θh
+ E(Yj) E(Yh)



and similarly for one category j = h

E(Yj(Yj − 1)) =
1

T (θ, ν)

∑
y∈Ωm,k

yj(yj − 1)

(
m

y1 · · · yk

)ν k−1∏
i=1

θyii

=
θ2
j

T (θ, ν)

∂2T (θ, ν)

∂θ2
j

= θ2
j

∂2 log T (θ, ν)

∂θ2
j

+ [E(Yj)]
2 .

Therefore,

Cov(Yj , Yh) = E(YjYh)− E(Yj) E(Yh) = θjθh
∂2 log T (θ, ν)

∂θj∂θh
= θj

∂ E(Yh)

∂θj
= θh

∂ E(Yj)

∂θh

and

Var(Yj) = E[Yj(Yj − 1)] + E(Yj)− [E(Yj)]
2 = θ2

j

∂2 log T (θ, ν)

∂θ2
j

+ θj
∂ log T (θ, ν)

∂θj

= θj

[
∂

∂θj
θj
∂ log T (θ, ν)

∂θj

]
= θj

∂ E(Yj)

∂θj
.

The probability generating function of the CMM distribution is

ΠY (t) = E

 k∏
j=1

t
Yj
j

 =
1

C(p, ν)

∑
y∈Ωm,k

 k∏
j=1

t
yj
j

( m

y1 · · · yk

)ν k∏
j=1

p
yj
k


=

1

C(p, ν)

∑
y∈Ωm,k

(
m

y1 · · · yk

)ν k∏
j=1

(tjpj)
yj

= C ((t1p1, . . . , tkpk), ν) / C(p, ν)

in terms of the original parameters p, and

ΠY (t) =
tmk

T (θ, ν)

∑
y∈Ωm,k

(
m

y1 · · · yk

)ν k−1∏
j=1

(
tjpj
tkpk

)yj
= tmk T

((
t1
tk

p1

pk
, . . . ,

tk−1

tk

pk−1

pk

)
, ν

)
/ T (θ, ν)

in terms of the baseline odds θ. Note that the probability generating function for the non-baseline
categories (1, . . . , k − 1) is obtained by setting tk = 1. Similarly the moment generating function



is

MY (t) = E

 k∏
j=1

etjYj

 = C
(
(et1p1, . . . , e

tkpk), ν
)
/ C(p, ν)

= emtkT

((
et1

etk
p1

pk
, . . . ,

etk−1

etk
pk−1

pk

)
, ν

)
/ T (θ, ν).

The CMM moment and probability generating functions naturally reduce to the corresponding
functions for the CMB distribution, (2) and (3), in the special case of k = 2.

3.5 Marginal and Conditional Distributions

The family of traditional multinomial distributions is closed under some useful manipulations;
specifically, marginals, conditionals, and grouping coordinates together all result in another multi-
nomial distribution (which is also binomial if two categories remain). The CMM family of dis-
tributions is closed under some of these manipulations. Some notation will be useful in the fol-
lowing derivations. Suppose (A,B) is a partition of the index set {1, . . . , k} into nonempty sets
with lengths |A| and |B| where Y = (YA,YB) ∼ CMMk(m,p, ν). Let YA = (Yj : j ∈ A),
yA = (yj : j ∈ A), y+

A =
∑

j∈A yj , pA = (pj : j ∈ A), p̃A = (pj/p
+
A : j ∈ A), p+

A =
∑

j∈A pj

and ΩA = {yA ∈ Nk−|B| : y+
A = m− y+

B}.
Computing the marginal distribution for YA, we have

P(YA = yA | m,p, ν) =
∑

yB∈ΩB

1

C (p, ν)

(
m

yA yB

)ν k∏
j=1

p
yj
j

=
1

C (p, ν)

(
m

yA m− y+
A

)ν ∏
j∈A

p
yj
j

 ∑
yB∈ΩB

(
m− y+

A

yB

)ν ∏
j∈B

p
yj
j


=

1

C (p, ν)

(
m

yA m− y+
A

)ν ∏
j∈A

p
yj
j

1−
∑
j∈A

pj

m−y+
A

×

 ∑
yB∈ΩB

(
m− y+

A

yB

)ν ∏
j∈B

p
yj
j

∑
j∈B

pj

−y
+
B


=

C
(
p̃B, ν;m− y+

A

)
C (p, ν;m)

(
m

yA m− y+
A

)ν ∏
j∈A

p
yj
j

1−
∑
j∈A

pj

m−y+
A

.(11)

We have added a third argument to the constant C(·, ·, ·) to emphasize the number of trials, which
can now vary in different parts of the expression. Note that the number of categories is now k′ =



|A|+1, where the added one comes from collapsing the coordinatesB into a single count y+
B , which

is redundant in the sense that y+
B = m − y+

A . We observe that (11) is a not a CMM distribution,
as it involves a ratio of CMM normalizing constants, nor is it another recognizable family. This
marginal distribution depends on the entire p and ν even when k′ < k. For the special case of
ν = 1, however, the ratio of CMM normalizing constants simplifies to 1, and (11) becomes a
CMMk′(m,pA, ν = 1); this follows from the usual multinomial distribution. An important special
case of (11) is the count for one category with A = {`} and k′ = 2, which gives

P(Y` = y` | m,p, ν) =
C (p̃B, ν;m− y`)

C (p, ν;m)

(
m

y` m− y`

)ν
py`` (1− p`)m−y` ; (12)

this again is not equivalent to a CMB distribution (1) because

C (p`, ν;m) 6= C (p, ν;m) /C (p̃B, ν;m− y`) , (13)

except in special cases such as ν = 1.
The conditional distribution of YA given YB is

P(YA = yA | YB = yB,m,p, ν) =

 1

C (p, ν)

(
m

yA yB

)ν k∏
j=1

p
yj
j

 ∑
yA∈ΩA

1

C (p, ν)

(
m

yA yB

)ν k∏
j=1

p
yj
j

−1

=

(
m− y+

B

yA

)ν ∏
j∈A

p
yj
j

∑
j∈A

pj

−y
+
A

×

 ∑
yA∈ΩA

(
m− y+

B

yA

)ν ∏
j∈A

p
yj
j

∑
j∈A

pj

−y
+
A


−1

=

(
m− y+

B

yA

)ν ∏
j∈A

p̃
yj
j

 ∑
yA∈ΩA

(
m− y+

B

yA

)ν ∏
j∈A

p̃
yj
j

−1

=
1

C
(
p̃A, ν;m− y+

B

)(m− y+
B

yA

)ν ∏
j∈A

p̃
yj
j ,

for yA ∈ Ωm−y+
B ,|A|

. This is a CMMk′′(m − y+
B , p̃A, ν) distribution, with k′′ = |A| categories

which are constrained to sum to m− y+
B . In particular, the conditional distribution for the count in

k′′ = 2 categories with A = {`, h} is

P(Y` = y`, Yh = m− y+
B − y` | YB = yB,m,p, ν)

=
1

C
(
(p̃`, p̃h), ν;m− y+

B

)( m− y+
B

y` m− y+
B − y`

)ν
p̃y`` p̃

m−y+
B−y`

h



=
1

C
(
p̃`, ν;m− y+

B

)( m− y+
B

y` m− y+
B − y`

)ν
p̃y`` (1− p̃`)m−y

+
B−y` , (14)

which corresponds to CMB(m − y+
B ,

p`
p`+ph

, ν). This result is particularly useful for devising a
Gibbs sampler (Robert and Casella, 2010) to draw Y ∼ CMMk(m,p, ν) based on a series of
draws from the CMB distribution; see Algorithm 1. The tail of a sufficiently long chain will
approximate draws from the desired CMM distribution. For the jth step, j = 1, . . . , k − 1, we
take A = {j, k} and use (14) to identify the conditional distribution of YA | YB; the kth category
is always taken to be second free category, without loss of generality. A more naive method of
sampling from CMM would be to precompute all probabilities for the multinomial sample space
and use Algorithm 2, which is typically used to handle finite discrete distributions. However, the
size of the sample space quickly becomes intractable as m and k increase. The Gibbs sampler
requires exact draws from a series of CMB distributions, which can each be done efficiently as
follows: compute all unnormalized probabilities (i.e. the numerators only) as in (1), divide by their
sum to get normalized probabilities, and invoke Algorithm 2.

Algorithm 1 Produce a chain of R draws approximating draws from CMMk(m,p, ν), starting
from initial value y(0) ∈ Ωm,k.

function GIBBSSAMPLER(R,y(0),m,p, ν)
Let y = y(0).
for r = 1, . . . , R do

Draw y1 ∼ CMB
(
m− y+

B ,
p1

p1+pk
, ν
)

and let yk = m− y+
B − y1.

Draw y2 ∼ CMB
(
m− y+

B ,
p2

p2+pk
, ν
)

and let yk = m− y+
B − y2.

. . .
Draw yk−1 ∼ CMB

(
m− y+

B ,
pk−1

pk−1+pk
, ν
)

and let yk = m− y+
B − yk−1.

Let y(r) = y.
return y(1), . . . ,y(R).

Algorithm 2 Draw an element from s = (s1, . . . , sd) with probabilities π = (π1, . . . , πd).
function DRAWDISCRETE(s,π)

Let Πj = π1 + · · ·+ πj , j = 1, . . . d be the cumulative probabilities.
Draw u from Uniform(0, 1).
if u ∈ [0,Π1) then return s1.
else if u ∈ [Π1,Π2) then return s2.

. . .
else if u ∈ [Πd−2,Πd−1) then return sd−1.
else return sd.

The CMM distribution is not closed to the grouping of categories. Consider (A1, . . . , AK) a



partition of the index set {1, . . . , k}. The distribution of the grouped categories is

P(Y +
A1

= y+
A1
, . . . , Y +

AK
= y+

AK
| m,p, ν)

=
∑

yA1
∈Ω

y+
A1

,|A1|

· · ·
∑

yAK∈Ω
y+
AK

,|AK |

mν

C (p, ν)

(
1

yA1

)ν
· · ·
(

1

yAK

)ν ∏
j∈A1

p
yj
j · · ·

∏
j∈AK

p
yj
j

=
1

C (p, ν)

(
m

y+
A1
· · · y+

AK

)ν  ∑
yA1
∈Ω

y+
A1

,|A1|

(
y+
A1

yA1

)ν ∏
j∈A1

p
yj
j

× · · ·

×

 ∑
yAK∈Ω

y+
AK

,|AK |

(
y+
AK

yAK

)ν ∏
j∈AK

p
yj
j


=
C
(
p̃A1 , ν; y+

A1

)
· · ·C

(
p̃AK , ν; y+

AK

)
C (p, ν)

(
m

y+
A1
· · · y+

AK

)ν K∏
`=1

(
p+
A`

)y+
A` . (15)

Similar to the marginal distribution, we observe that (15) is not a CMM distribution because the
term involving the normalizing constants does not reduce. For the special case of ν = 1, however,
the term involving the normalizing constants simplifies to 1 and (15) becomes CMMK(m,p+, ν =
1) with p+ = (p+

A1
, . . . , p+

AK
); this follows from the usual multinomial distribution.

4. Conclusion

This paper introduces a Conway-Maxwell-multinomial (CMM) distribution as a flexible alternative
to the traditional multinomial distribution. We formally extend the CMB distribution to the setting
of more than two categories by deriving the CMM from a combination of more than two CMP
random variables. Akin to the versatility of the CMP relative to the Poisson distribution and the
CMB relative to the binomial distribution, CMM allows for both over- and under-dispersion as
compared to the multinomial distribution. The CMM captures extreme cases of dispersion that
exhibit mass points on the support of the multinomial sample space, as well as all intermediate cases
that exhibit all varieties of distributional spread. CMM is an exponential family distribution which
naturally yields properties such as moments and generating functions. Conditional distributions of
a CMM random variable are again in the CMM family, similarly to conditionals of the standard
multinomial distribution being multinomial. However, unlike the standard multinomial, marginal
and grouping distributions of CMM are not CMM distributions.

The flexibility offered by CMM comes at the cost of additional computational challenges.
Complete enumeration of the terms in the normalizing constant and related quantities is a reason-
able strategy for CMB and CMP (with appropriate truncation), but becomes intractable for CMM



as the multinomial sample space grows. Addressing these challenges to make CMM practical for
statistical applications is a topic of future work.
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