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Abstract

A simple closed form for the Fisher information matrix (FIM) usually cannot be obtained under
finite mixtures. Under binomial and multinomial finite mixtures, several authors have considered a
certain block-diagonal approximation to the FIM. The approximation has been used in scoring iterations
and in demonstrating asymptotic relative efficiency of proposed estimators. Raim et al (2014, Statistical
Methodology 18:115–130) have shown that this approximation coincides with the complete data FIM of
the observed data and latent mixing process jointly. It can therefore be formulated for a wide variety of
missing data problems. Binomial and multinomial mixtures feature a number of trials, which, when taken
to infinity, result in the FIM and the approximation becoming arbitrarily close. This work considers a
certain clustered sampling scheme that allows the convergence result to be extended significantly to the
class of exponential family finite mixtures. A series of examples demonstrate the convergence result and
suggest that it can be further generalized.
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1 Introduction

We consider an approximation to the Fisher information matrix (FIM) for exponential family finite mixtures.
Obtaining a simple closed form for this matrix is generally not possible. A computationally convenient ap-
proximation may be useful in frequentist estimation (e.g. the scoring algorithm), in inference (e.g. computing
standard errors and confidence intervals), and numerous other applications in which the information matrix
is used.

This paper follows on to (Raim et al., 2014), which considers a block-diagonal matrix originally proposed
in (Blischke, 1962, 1964) to approximate the FIM for the finite mixture of binomials, and later extended
to multinomial finite mixtures by Morel and Nagaraj (1993). The matrix is seen to be, in fact, a complete
data information matrix, where the missing data is the subpopulation indicator. The approximation and
true FIM are shown to become close as the number of multinomial trials are increased, which justifies
the approximation. The approximation is shown to be useful in Fisher scoring iterations, resulting in an
estimation method comparable to Expectation-Maximization. However, the FIM and the approximation are
not necessarily close for small to moderate m. It was noted that the complete data FIM can be formulated
for any finite mixture, or more generally, for likelihoods involving missing data. However, the convergence
between approximation and true FIM could not immediately be extended beyond the scope of multinomial
data analysis, as it was based on the number of trials becoming large.

This paper provides one such extension, to exponential family finite mixtures. We consider a special
clustered sampling scheme; suppose that m observations are sampled from one of s subpopulations. It is
unknown to which subpopulation the observations belong, as in the usual finite mixture, but it is known that
they share a common subpopulation. This provides an analogue to the trials of a binomial or multinomial
experiment, and allows a convergence result to be formulated.
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The proof in the multinomial setting (Morel and Nagaraj, 1991; Raim et al., 2014) had been based on
bounds for tail probabilities of binomial random variables and used the fact that the sample space is bounded.
The proof in the present paper exploits the exponential family form and does not require restrictions on the
sample space. It is shown that the FIM and the approximation converge together as m → ∞, and the
convergence is exponential in m. However, the exponent includes a term which depends on the distance
between subpopulations so that the convergence is very slow when subpopulations are similar and very fast
when dissimilar. Therefore, the approximation is most suitable when the mixed subpopulations are more
distinct and m is larger.

Because of the intractability of deriving the expectations needed for the FIM of a finite mixture, “ob-
served” information quantities such as the Hessian of the log-likelihood or outer product of the score vector
are often used in inference applications. For example, (McLachlan and Peel, 2000, Chapter 2) reviews several
methods based on observed information, such as one proposed by Louis (1982) to obtain standard errors from
the Expectation-Maximization algorithm. More recently, Boldea and Magnus (2009) provide expressions for
observed information under the multivariate normal finite mixture. In this work, we consider the FIM to
be a quantity of interest in its own right, but mention that it may be preferred because properties of the
observed information, such as invertibility, depend on the sample.

The rest of the paper proceeds as follows. Section 2 gives the formulation of the problem. Section 3
proves that the complete data FIM and true FIM become arbitrarily close as m becomes large, and provides
rates of convergence. Section 4 highlights a connection between the convergence rate and the probability of
misclassification among the s subpopulations using an optimal classification rule. Section 5 provides several
examples of the convergence. Finally, Section 6 gives concluding remarks.

2 Problem Formulation

Suppose a population consists of s subpopulations, and that the `th subpopulation occurs with proportion π`,
for ` = 1, . . . , s. Let Z ∼ Discrete(1, . . . , s;π) be the result of drawing one of the populations at random; that
is, Z = ` with probability π` for ` = 1, . . . , s. Consider drawing an independent and identically distributed
sample X1, . . . ,Xm from the `th subpopulation, where Xj are d-dimensional random variables. We will
suppose an exponential family density for Xi in the form

f(x | φ`) = exp
{
b(x) + η(φ`)

Tu(x) + a(η(φ`))
}
,

with respect to a dominating measure (say) λ common to ` = 1, . . . , s, which can be written in terms of the
natural parameter η` as

f(x | η`) = exp
{
b(x) + ηT` u(x) + a(η`)

}
.

The quantity U(X) is the sufficient statistic in this formulation, assumed to be a vector of dimension k. The
subpopulation densities f(x | η`), for ` = 1, . . . , s, are members of the exponential family F = {f(· | η) :
η ∈ Ξ}. We will assume Ξ is an open convex set in Rk so that the F is an exponential family of full rank,
and derivatives of the density may be taken at any η ∈ Ξ. These assumptions ensure important regularity
conditions in the theory of Fisher information which are discussed in (Shao, 2008, Section 3.1) and (Lehmann
and Casella, 1998, Section 2.5), yet also cover a wide range of practically used densities. The joint density
of X1, . . . ,Xm conditional on selecting subpopulation Z = ` can be written as

f(x1, . . . ,xm | η`) = exp

{
m∑
i=1

b(xi) + ηT`

m∑
i=1

ui +ma(η`)

}
,

so that unconditionally,

f(x1, . . . ,xm | θ) =

s∑
`=1

π` exp

{
m∑
i=1

b(xi) + ηT`

m∑
i=1

ui +ma(η`)

}
,
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where θ = (η1, . . . ,ηs, π1, . . . , πs−1). By Lemma 2.7.2 of Lehmann and Romano (2005), the density of
T =

∑m
i=1Ui conditional on the subpopulation Z = ` can be written as

f(t | η`) = exp
{
ηT` t+ma(η`)

}
with respect to some dominating σ-finite measure ν. Therefore, unconditionally,

f(t | θ) =

s∑
`=1

π` exp
{
ηT` t+ma(η`)

}
(2.1)

with respect to the same dominating measure. We will use the notation Ω to refer to the abstract sample
space with a typical element ω, and T to refer to the space of T (ω). The score vectors can be obtained by
noting that log f(t | η) = ηT t+ma(η) and ∂

∂η log f(t | η) = t− E(T ), therefore

∂

∂η`
log f(t | θ) =

π`f(t | η`)
f(t | θ)

[t− E(T | Z = `)] , for ` = 1, . . . , s

∂

∂π`
log f(t | θ) =

f(t | η`)− f(t | ηs)
f(t | θ)

.

Let W` be a random variable with the distribution of T when Z = ` is observed. The Fisher information
matrix in W` for η` can be obtained as

E

{
− ∂2

∂η`∂ηT`
log f(t | η`)

}
= Var(W`) = m{Var(U1 | Z = `)}. (2.2)

Denote I(θ) as the FIM of T under the finite mixture and Ĩ(θ) as the FIM of the complete data (T , Z),
both with respect to the parameter θ = (η1, . . . ,ηs,π). Let q = sk+ s−1 denote the dimension of θ so that

I(θ) and Ĩ(θ) are q × q matrices. We will sometimes use the subscript m to emphasize that the matrices
depend on the number of observations m.

The matrix Ĩ(θ) has a simple closed form

Ĩ(θ) = Blockdiag (π1F1, . . . , πsFs,Fπ) , where (2.3)

F` = m{Var(U1 | Z = `)}, for ` = 1, . . . , s,

Fπ = D−1
π + π−1

s 11T .

Here, Dπ = Diag(π1, . . . , πs−1) and 1 denotes a vector of ones of the appropriate dimension. Notice that F`
is the k × k FIM with respect to W`, and Fπ is the (s − 1) × (s − 1) FIM of Mults(π, 1), the multinomial
distribution on s categories with probabilities π and a single trial. To obtain expression (2.3), the complete
data density for (T , Z) is

f(t, z | θ) =

s∏
`=1

[
π`f(t | η`)

]I(z=`)
.

Let ∆ = (∆1, . . . ,∆s) with ∆` = I(Z = `) so that ∆ ∼ Mults(1,π), and let ∆−s denote the vector
(∆1, . . . ,∆s−1). This complete data density yields a score vector with entries

∂

∂ηa
log f(t, z | θ) = ∆a

∂

∂ηa
log f(t | ηa),

∂

∂π
log f(t, z | θ) = D−1

π ∆−s −
∆s

πs
1.
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Taking second derivatives yields

∂2

∂ηa∂ηTa
log f(t, z | θ) = ∆a

∂2

∂ηa∂ηTa
log f(t | ηa)

∂2

∂ηa∂ηTb
log f(t, z | θ) = 0, for a 6= b,

∂2

∂ηa∂πT
log f(t, z | θ) = 0,

∂2

∂π∂πT
log f(t, z | θ) = −

[
D−2
π ∆−s +

∆s

π2
s

11T
]
.

Taking the expected value of the negative of these terms, jointly with respect to (T , Z), obtains the blocks
of (2.3).

In the specific case of multinomial finite mixtures, Ĩ(θ) is seen to serve the role of the approximate

information matrix in (Raim et al., 2014). In Section 3 we show that Ĩm(θ)− Im(θ)→ 0 as m→∞ under
the present setting.

3 Convergence of Approximate Information Matrix

The proof of the convergence of Ĩm(θ) − Im(θ) to 0 will proceed in several steps. We will first show that
this difference is the expected value an the information matrix. One simple consequence of this is that the
difference must be positive semidefinite. Denote IZ|T (θ) as the FIM of Z conditional on T .

Lemma 3.1. The matrix Ĩ(θ)− I(θ) is equal to ET
[
IZ|T (θ)

]
.

Proof. Notice that

∂

∂θ
log fθ(T , Z) =

∂

∂θ
log fθ(Z | T ) +

∂

∂θ
log fθ(T ).

Therefore,

Ĩ(θ) = ET ,Z

[{
∂

∂θ
log fθ(T , Z)

}{
∂

∂θ
log fθ(T , Z)

}T]
= ET

[
IZ|T (θ)

]
+B +BT + I(θ). (3.1)

Now we have

B = ET ,Z

[{
∂

∂θ
log fθ(Z | T )

}{
∂

∂θ
log fθ(T )

}T]

= ET EZ|T

[{
∂

∂θ
log fθ(Z | T )

}{
∂

∂θ
log fθ(T )

}T]
= 0.

The result follows from rearranging terms in (3.1).

The quantity ET
[
IZ|T (θ)

]
has been referred to as the “missing information” (Orchard and Woodbury,

1972), so that we have

Actual Information = Complete Information−Missing Information.

Before proceeding with the main result, we state several important consequences of Lemma 3.1. A Wald-like
test statistic based on the approximation will be systematically too large, and a Score-like test statistic will
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be too small. Also, standard errors obtained from the approximate information matrix will be systematically
too optimistic (small). The notation ej will be used to represent the jth column of the identity matrix of
the appropriate dimension.

Corollary 3.2.

(a) (Wald Statistic) For any θ0 ∈ Θ,

(θ̂ − θ0)T Ĩ(θ̂)(θ̂ − θ0) ≥ (θ̂ − θ0)TI(θ̂)(θ̂ − θ0)

(b) (Score Statistic) Suppose I(θ) and Ĩ(θ) are nonsingular, and that Ĩ(θ)− I(θ) is positive definite. Then
for any θ0 ∈ Θ,

[S(θ0)]TI−1(θ0)[S(θ0)] > [S(θ0)]T Ĩ−1(θ̂0)[S(θ0)].

(c) (Standard Errors) Suppose I(θ) and Ĩ(θ) are nonsingular, and that Ĩ(θ) − I(θ) is positive definite.

Denote by Iij(θ) and Ĩij(θ) the elements of the two inverse matrices respectively. Then Ijj(θ) > Ĩjj(θ) for
j = 1, . . . , q.

Proof.

(a) From Lemma 3.1, Ĩ(θ̂) − I(θ̂) = ET
[
IZ|T (θ)

]
, an expected value of a conditional information matrix

which is positive semidefinite. Therefore the quantity

(θ̂ − θ0)T
(
Ĩ(θ̂)− I(θ̂)

)
(θ̂ − θ0)

is nonnegative and the result follows.

(b) Lemma A.2 gives that I−1(θ0)− Ĩ−1(θ̂0) is positive definite, which implies that the quantity

[S(θ0)]T
(
I−1(θ0)− Ĩ−1(θ̂0)

)
[S(θ0)]

is seen to be strictly positive, and the result follows.

(c) Lemma A.2 gives that I−1(θ)−Ĩ−1(θ) is positive definite, therefore the diagonal elements eTj

[
I−1(θ)− Ĩ−1(θ)

]
ej

are positive for j = 1, . . . , q.

A useful consequence of Lemma 3.1 is next given as Proposition 3.3, which states that the off-diagonal
elements of the matrix Ĩm(θ)− Im(θ) have magnitudes which are bounded by the diagonal elements.

Proposition 3.3. Denote the (i, j)th element of IZ|T (θ) as C
(m)
ij when the sample size is m. Then

E |C(m)
ij | ≤

{
E(C

(m)
ii )

}1/2 {
E(C

(m)
jj )

}1/2

.

Proof. Recall that E(C
(m)
ij ) is the (i, j)th element of Ĩm(θ)− Im(θ) by Lemma 3.1. Because IZ|T (θ) is the

covariance matrix of a score function, we may apply the Cauchy-Schwarz inequality to obtain

|C(m)
ij | ≤ [C

(m)
ii ]1/2 · [C(m)

jj ]1/2,

for any pair (i, j), which implies that

E |C(m)
ij | ≤ E

{
[C

(m)
ii ]1/2 · [C(m)

jj ]1/2
}
.

Now apply the Cauchy-Schwarz inequality to the right hand side to obtain

E
{

[C
(m)
ii ]1/2 · [C(m)

jj ]1/2
}
≤
{

E[C
(m)
ii ]

}1/2

·
{

E[C
(m)
jj ]

}1/2

,

which gives the result.
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We focus on the parameterization θ = (η1, . . . ,ηs,π) for convenience, but note that the convergence
behavior is preserved under transformations. Suppose ψ(θ) is a transformation of θ which does not depend
on m. We have that

Ĩm(ψ)− Im(ψ) =

(
∂θ

∂ψ

)[
Ĩm(θ)− Im(θ)

]( ∂θ
∂ψ

)T
,

so that Ĩm(ψ) − Im(ψ) → 0 as m → ∞ if and only if Ĩm(θ) − Im(θ) → 0. It is also clear that the rate

of convergence of the elements of Ĩm(ψ) − Im(ψ) to zero will be equivalent to the rate of the elements of

Ĩm(θ)− Im(θ).
Now consider the block decomposition of the true information matrix

I(θ) =


A11 . . . A1s A1π

...
. . .

...
...

As1 . . . Ass Asπ

Aπ1 . . . Aπs Aππ

 , (3.2)

with blocks

Aab = E

[{
∂

∂ηa
log f(t | θ

}{
∂

∂ηb
log f(t | θ)

}T]
, a, b ∈ {1, . . . , s},

AT
bπ = Aπb = E

[{
∂

∂π
log f(t | θ)

}{
∂

∂ηb
log f(t | θ)

}T]
, b ∈ {1, . . . , s},

Aππ = E

[{
∂

∂π
log f(t | θ)

}{
∂

∂π
log f(t | θ)

}T]
.

By Proposition 3.3, it is only necessary to show convergence of the diagonal elements of Ĩ(θ)−I(θ) to zero.
To do this, we will obtain expressions for the diagonal blocks. It will be helpful to define

R
(m)
i (t) =

s∑
` 6=i

π` exp{(η` − ηi)T t+m[a(η`)− a(ηi)]} =
f(t | θ)

f(t | ηi)
− πi, and

Q
(m)
i (t) =

πif(t | ηi)
f(t | θ)

=
πi

πi +R
(m)
i (t)

.

Notice that Q
(m)
i (T ) = P(Z = ` | T ) is the posterior probability of observing the `th subpopulation given

an observed T , hence taking expectation with respect to the mixture density of f(t | θ) yields

ET [Q
(m)
i (T )] = ET

{
EZ|T [I(Z = `) | T ]

}
= P(Z = `) = π`. (3.3)

Later we will encounter the same expectation but under the density f(t | η`), in which case the simplification
(3.3) does not happen. Block (i, i) of the decomposition (3.2) can be written as

πiFi −Aii = π2
i

∫ [
1−Q(m)

i (t)
] (
t− E(Wi)

)(
t− E(Wi)

)T
f(t | ηi)dν(t)

whose jth diagonal element is

eTj [πiFi −Aii] ej = π2
i E

{[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2}
. (3.4)
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The lower right block of the decomposition (3.2) is

Fπ −Aππ =
(
D−1
π + π−1

s 11T
)

(3.5)

− E

 1

f2(t | θ)

 f(t | η1)− f(t | ηs)
...

f(t | ηs−1)− f(t | ηs)


 f(t | η1)− f(t | ηs)

...
f(t | ηs−1)− f(t | ηs)


T
 .

whose ath diagonal element can be expressed as

eTa [Fπ −Aππ] ea = (π−1
a + π−1

s )− π−1
a E

[
Q(m)
a (Wa)

]
− π−1

s E
[
Q(m)
s (Ws)

]
+ 2π−1

a E
[
Q(m)
a (Ws)

]
(3.6)

The following Lemma gives a simple convexity result for exponential family densities which will determine

the behavior of R
(m)
i (Wj) and Q

(m)
i (Wj) as m → ∞. See (Boyd and Vandenberghe, 2004) for background

on convex functions.

Lemma 3.4. Suppose the density f(t | η) = exp{ηT t+ma(η)}, has natural parameter space Ξ which is an
open convex set, and FIM Im(η) is positive definite on Ξ. Then for any η∗ ∈ Ξ

a(η)− a(η∗) < a′(η∗)T (η − η∗), ∀η ∈ Ξ. (3.7)

where a′(η) denotes the derivative of a at η.

Proof. Notice that
∂2

∂η∂ηT
log f(t | η) = m

∂2

∂η∂ηT
a(η).

Because Im(η) = −m ∂2

∂η∂ηT
a(η) is positive definite on Ξ, this implies −a is a strictly convex function. Since

a is differentiable on the convex set Ξ we have, for g := −a,

g(η)− g(η∗) > g′(η∗)T (η − η∗), ∀η ∈ Ξ,

which is equivalent to the result (3.7).

Next, the behavior of R
(m)
i (Wj) and Q

(m)
i (Wj) can be determined for large m; note that for each

expression, the behavior depends on which distribution, j = 1, . . . , s, is assumed forWj . Note the expressions

− γIJK = −a′(ηJ)T (ηI − ηK) + [a(ηI)− a(ηK)],

c∗i =

s∧
` 6=i

γ`ii, d∗ij =

s∨
` 6=i

{−γ`ji} , and c∗∗ =

s∧
`=1

c∗` , (3.8)

which will be used for the remainder of the paper.

Proposition 3.5. Suppose ηa 6= ηb for all a 6= b. Then

(a) R
(m)
i (Wi)

a.s.
= o(e−mc

∗
i ) for c∗i > 0, so that R

(m)
i (Wi)

a.s.→ 0 as m→∞.

(b) If j 6= i then for d∗ij > 0 and γijj > 0,

O(emγijj ) ≤ R(m)
i (Wj) ≤ O(emd

∗
ij ), almost surely, for all large m.

As a consequence, R
(m)
i (Wj)

a.s.→ ∞ as m→∞.
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Proof. By the strong law of large numbers and continuity, we have that for almost any ω ∈ Ω and any ε > 0,
there exists an Mω such that, for all m ≥Mω,∣∣∣(η` − ηi)T [−a′(ηj)]− (η` − ηi)TWj(ω)/m

∣∣∣ < ε

⇐⇒ −a′(ηj)T (η` − ηi)− ε < (η` − ηi)TWj(ω)/m < −a′(ηj)T (η` − ηi) + ε.

This implies that ∀m ≥Mω

R
(m)
i (Wj(ω)) ≤

s∑
` 6=i

π` exp
{
m
[
− a′(ηj)T (η` − ηi) + [a(η`)− a(ηi)] + ε

]}
=

s∑
6̀=i

π` exp{m (−γ`ji + ε)},

and

R
(m)
i (Wj(ω)) ≥

s∑
6̀=i

π` exp
{
m
[
− a′(ηj)T (η` − ηi) + [a(η`)− a(ηi)]− ε

]}
=

s∑
6̀=i

π` exp{m (−γ`ji − ε)}.

Case (a). Suppose j = i. From Lemma 3.4 we have

γ`ii = a′(ηi)
T (η` − ηi)− [a(η`)− a(ηi)] > 0

for all ` 6= i, so that for m ≥Mω,

0 ≤ R(m)
i (Wi(ω)) ≤

s∑
` 6=i

π`e
m(−γ`ii+ε) =

s∑
` 6=i

π`e
−m(γ`ii−ε) ≤ e−m(c∗i−ε)

s∑
6̀=i

π` ≤ e−m(c∗i−ε) → 0

as m→∞. Note that c∗i > ε when ε > 0 is taken arbitrarily small. Since this holds for almost every ω ∈ Ω,

we have R
(m)
i (Wi)

a.s.→ 0 and R
(m)
i (Wi)

a.s.
= o(e−mc

∗
i ).

Case (b). Now suppose j 6= i. Consider for ` = 1, . . . , s,

−γ`ji = −a′(ηj)T (η` − ηi) + [a(η`)− a(ηi)].

Notice that

−γjji = −a′(ηj)T (ηj − ηi) + [a(ηj)− a(ηi)]

= a′(ηj)
T (ηi − ηj)− [a(ηi)− a(ηj)] = γijj ,

where γijj > 0 by Lemma 3.4. Then for m ≥Mω,

R
(m)
i (Wj(ω)) ≥

s∑
` 6=i

π`e
m(−γ`ji−ε) ≥ πjem(−γjji−ε) = πje

m(γijj−ε) →∞, (3.9)

as m→∞, since γijj − ε > 0 for arbitrarily small ε > 0. Therefore R
(m)
i (Wj)

a.s.→ ∞. We can also obtain an
upper bound using
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R
(m)
i (Wj(ω)) ≤

s∑
` 6=i

π`e
m(−γ`ji+ε) ≤

s∑
6̀=i

π`e
m(d∗ij+ε) ≤ em(d∗ij+ε), (3.10)

noting that d∗ij =
∨s
` 6=i{−γ`ji} ≥ −γjji = γijj > 0. We have therefore found the upper and lower bounds

πje
m(γijj−ε) ≤ R(m)

i (Wj(ω)) ≤ em(d∗ij+ε), ∀m ≥Mω,

and hence the desired almost sure bounds

πje
mγijj ≤ R(m)

i (Wj) ≤ emd
∗
ij , for all large m.

are obtained.

Proposition 3.6. Suppose ηa 6= ηb for all a 6= b. Then

(a) 1−Q(m)
i (Wi)

a.s.
= O(e−mc

∗
i ), so that Q

(m)
i (Wi)

a.s.→ 1 as m→∞,

(b) If j 6= i then Q
(m)
i (Wj)

a.s.
= O(e−mγijj ), so that Q

(m)
i (Wj)

a.s.→ 0 as m→∞,

with c∗i and γijj as defined in (3.8).

Proof. Recall that Q
(m)
i (t) = πi · {πi +R

(m)
i (t)}−1 and apply Proposition 3.5 to obtain the limit. To obtain

the rates, first take T = Wi, and notice that

1−Q(m)
i (Wi) =

1

πi

[
R

(m)
i (Wi)

]−1

+ 1
.

Since R
(m)
i (Wi)

a.s.
= O(e−mc

∗
i ) by Proposition 3.5, there exists a constant K such that∣∣∣∣∣R(m)

i (t)

e−mc
∗
i

∣∣∣∣∣ < K ⇐⇒
[
R

(m)
i (Wi)

]−1

> K−1emc
∗
i ,

almost surely for all m large, so that

emc
∗
i

[
1−Q(m)

i (Wi)
]
≤ emc

∗
i

πiK−1emc
∗
i + 1

→ K

πi
, as m→∞,

This gives the result 1−Q(m)
i (t)

a.s.
= O(e−mc

∗
i ).

Now take T = Wj for j 6= i. We have Q
(m)
i (Wj) = πi · {πi + R

(m)
i (Wj)}−1, and Proposition 3.5 gives

that R
(m)
i (Wj) ≥ emγijj almost surely for all large m. Then we have

emγijjQ
(m)
i (Wj) =

πie
mγijj

πi +R
(m)
i (Wj)

≤ πie
mγijj

πi +O(emγijj )

almost surely for all largem, which converges to a constant asm→∞. Then we have the resultQ
(m)
i (Wj)

a.s.
=

O(e−mγijj ).

Proposition 3.6 suggests that the convergence between the FIM and approximate information will be fast
when both of the following happen quickly as m is increased: (1) the posterior probability of being in the
`th subpopulation goes to 1 when the true subpopulation Z = `, and (2) the posterior probability of being
in the `th subpopulation goes to 0 when the true subpopulation Z 6= `. It is clear from Proposition 3.6 and

9



dominated convergence that the expectation (3.6) converges to zero. We also note that Wij − E(Wij) is a

sum of independent and identically distributed random variables, so that [Wij − E(Wij)]
2 a.s.

= O(m2), and
therefore

π2
i

[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2 a.s.
= O(m2e−mc

∗
i ). (3.11)

Then the expectation (3.4) converges to zero if and only if the LHS of (3.11) is uniformly integrable (Resnick,

1999, chapter 6). The convergence of Ĩm(θ)−Im(θ) can therefore be characterized in the following theorem.

Theorem 3.7. Ĩm(θ)−Im(θ)→ 0 as m→∞ if and only if the sequence (3.11) is uniformly integrable for
each i = 1, . . . , s.

Some additional work will allow us to prove Ĩm(θ) − Im(θ) → 0 directly without checking uniform
integrability, and also to obtain rates of convergence.

Lemma 3.8. E
[
Q

(m)
i (Wi)

]
= 1−O(e−mc

∗
i ) with c∗i defined as in Proposition (3.8).

Proof. From the Markov inequality we have,

P
(
Q

(m)
i (Wi) ≥ ε

)
≤ ε−1 E

[
Q

(m)
i (Wi)

]
≤ ε−1, for any ε > 0,

recalling that 0 ≤ Q
(m)
i (Wi) ≤ 1. Proposition 3.6 gives that Q

(m)
i (Wi)

a.s.
= 1 − O(e−mc

∗
i ), which implies

P
(
Q

(m)
i (Wi) ≥ ε

)
= 1−O(e−mc

∗
i ), assuming that 0 < ε < 1. Therefore

ε
[
1−O(e−mc

∗
i )
]
≤ E

[
Q

(m)
i (Wi)

]
≤ 1.

Taking ε < 1 arbitrarily close to 1 gives the result.

Lemma 3.9. Let Sn = X1 + · · ·+Xn where {Xi} are independent and identically distributed and E(|X1|k) <
∞ for a given positive integer k ≥ 0. Then E(Skn) = O(nk).

Proof. Notice that

E(Skn) = E[(X1 + · · ·+Xn)k] =
∑

z∈Ωn,k

k!

z1! · · · zn!
E[Xz1

1 ] · · ·E[Xzn
1 ]

where Ωn,k is the multinomial sample space with n categories and k trials. Let

ξ = max
z∈Ωn,k

∣∣∣E[Xz1
1 ] · · ·E[Xzn

1 ]
∣∣∣

and note that ξ ≥ 0 is finite since the expression involves only moments of X1 up to order k, which are all
assumed to be finite. Now we have ∣∣E(Skn)

∣∣ ≤ ξ ∑
z∈Ωn,k

k!

z1! · · · zn!
= ξnk,

which gives the result.

The following theorem gives rates for the diagonal elements of the matrix Ĩ(θ)− I(θ), which dominate
the other elements of the matrix. We require that fourth moments are finite for all components of the original
Xi given Z = ` for ` = 1, . . . , s. But this does not represent any additional restriction; an exponential family
of full rank has a moment generating function which is finite in a neighborhood of zero (Shao, 2008, Theorem
2.1), therefore all moments exist.
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Theorem 3.10. Consider the matrix Ĩ(θ)− I(θ);

(a) For the jth diagonal element of the ith diagonal block,

eTj (πiFi −Aii) ej = O(m2e−
m
2 c

∗
i ),

provided that E[|X1j |4 | Z = i] <∞.

(b) For the jth diagonal element of the π diagonal block,

eTj (Fπ −Aππ) ej = O(e−mc
∗
j ) +O(e−mc

∗
s ) +O(e−mγjss), j = 1, . . . , s− 1

Proof. For (a) we have

π2
i E

{[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2}
≤ π2

i

√
E

[(
1−Q(m)

i (Wi)
)2
]√

E

[(
Wij − E(Wij)

)4
]

(3.12)

≤ π2
i

√
E
[
1−Q(m)

i (Wi)
]√

E

[(
Wij − E(Wij)

)4
]

(3.13)

= π2
i

{
O(e−mc

∗
i )O(m4)

}1/2

(3.14)

= O(m2e−
m
2 c

∗
i ).

Notice that (3.12) follows from the Cauchy-Schwarz inequality, (3.13) because 0 ≤ X ≤ 1 implies E(X2) ≤
E(X), and (3.14) by Lemmas 3.8 and 3.9.

For (b), use Proposition 3.6 with the expectation (3.6) to obtain

(π−1
j + π−1

s )− π−1
j E

[
Q

(m)
j (Wj)

]
− π−1

s E
[
Q(m)
s (Ws)

]
+ 2π−1

j E
[
Q

(m)
j (Ws)

]
= π−1

j O(e−mc
∗
j ) + π−1

s O(e−mc
∗
s ) + 2π−1

j O(e−mγjss).

Note that Theorem 3.10 (b) implies the simpler bound eTj (Fπ −Aππ) ej = O(e−mc
∗
j ) + O(e−mc

∗
s ) =

O(e−mc
∗∗

) since c∗` =
∧s
a=1 γ`aa.

Because of the convenient block-diagonal form of the information matrix approximation, its inverse
Ĩ−1
m (θ) = Blockdiag(π−1

1 F−1
1 , . . . , π−1

s F−1
s ,F−1

π ) is also block-diagonal. As in (Raim et al., 2014, Theo-

rem 2.5), the convergence result for Ĩm(θ)− Im(θ) can be used to show convergence between the inverses.
This is stated as a theorem, and the proof is left to the appendix.

Theorem 3.11. Suppose Im(θ) and Ĩm(θ) are nonsingular. Then I−1
m (θ)− Ĩ−1

m (θ)→ 0 as m→∞.

4 Relationship to Classification Problem

There is a fundamental connection between the convergence behavior of Ĩm(θ)−Im(θ) and the probability
of misclassification using an optimal rule. Namely, both properties depend on the separation between
subpopulations in a similar way. Suppose that there are s subpopulations with densities f(x | φ1), . . . , f(x |
φs) from an exponential family, which occur in the overall population in respective proportions π1, . . . , πs.
Now let X1, . . . ,Xm be independently and identically distributed from subpopulation Z = j, but where
Z is not observed. Consider classification rules using T =

∑m
i=1U(Xi) which is sufficient given Z. The
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classification problem is to specify a rule, described by regions D = {D1, . . . ,Ds} which partition the space
T of T so that

T ∈ D` ⇐⇒ T belongs to `th subpopulation.

The objective is to specify a rule D which minimizes the probability of misclassification p(D). (Another may
be to minimize the cost of misclassification, if the possible misclassifications are assigned different costs). It
is well-known (Anderson, 2003) that the rule D∗ = {D∗1 , . . . ,D∗s}, such that

D∗` =

{
t ∈ T : ` = argmax

a
πaf(t | φa)

}
,

minimizes p(D). Using this optimal rule, we may obtain the inequality

p(D∗) =

s∑
`=1

P(T /∈ D∗` | Z = `) P(Z = `) =

s∑
`=1

π` P

⋃
j 6=`

[T ∈ D∗j ]

∣∣∣∣∣∣ Z = `


=

s∑
`=1

π` P

⋃
j 6=`

[πjf(T | φj) ≥ π`f(T | φ`)]

∣∣∣∣∣∣ Z = `


≤

s∑
`=1

π` P

∑
j 6=`

πjf(T | φj) ≥ π`f(T | φ`)

∣∣∣∣∣∣ Z = `


=

s∑
`=1

π` P
(
R

(m)
` (W`) ≥ π`

)
.

The optimal probability of misclassification p(D∗) provides a measurement on the degree of mutual sepa-
ration between the s subpopulations; a higher probability indicates that it is more difficult to distinguish
among them. Of course the rule D∗ can only be applied when all φ` and π are known. Recall that

R
(m)
` (W`)

a.s.
= o(e−mc

∗
` ), where c∗` was defined in (3.8), so that we obtain p(D∗) = o(e−mc

∗∗
). Therefore,

collection of additional observations for T =
∑m
i=1U(Xi) may drastically improve p(D∗) if all c∗` are large,

and has almost no effect when some c∗` are very small.
A connection between p(D∗) and the convergence rate of the approximate information matrix can be

seen from

P
(
R

(m)
` (W`) ≤ π`

)
= lim

ε↑1
εP

[
R

(m)
` (W`) ≤ π`

(
1

ε
− 1

)]
= lim

ε↑1
εP
(
Q

(m)
` (W`) ≥ ε

)
≤ E

[
Q

(m)
` (W`)

]
⇐⇒ E

[
1−Q(m)

` (W`)
]
≤ P

(
R

(m)
` (W`) ≥ π`

)
so that P

(
R

(m)
` (W`) ≥ π`

)
gives an upper bound on the probability of misclassifying T when Z = `. Recall

that the convergence rate of the `th block of Ĩm(θ)− Im(θ) depends on E
[
1−Q(m)

` (W`)
]
, as in the proof

of Theorem 3.10. Proposition 3.5 gives

P
(
R

(m)
` (W`) ≥ π`

)
≤ P

(
O(e−mc

∗
` ) ≥ π`

)
= O(e−mc

∗
` ), for all large m,

so that p(D∗) ≤
∑s
`=1 π`O(e−mc

∗
` ).
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5 Examples

Remark 5.1 (Multinomial Finite Mixture). Let X1, . . . ,Xm be independent and identically distributed as
Multk+1(1,pZ), with Z ∼ Discrete(1, . . . , s;π). Take T =

∑m
i=1Xi. The multinomial subpopulations are

exponential families with f(t | m,p`) = exp
{
ηT` t+ma(η`) + h(t)

}
, where

η` =

(
log

p`1
p`,k+1

, · · · , log
p`k
p`,k+1

)
and a(η`) = log p`,k+1,

with p`,k+1 = 1 −
∑k
a=1 p`a. The approximate information matrix with respect to θ = (η1, . . . ,ηs,π)

is then Ĩ(θ) = Blockdiag(π1F1, . . . , πsFs,Fπ) where F` = mVar(U1) = m{Diag(p`) − p`pT` } and Fπ =
D−1
π + π−1

s 11T . Transforming to ψ(θ) = (p1, . . . ,ps,π) gives ∂η`/∂p` = Diag(p`)
−1 + p−1

`,k+111T , so that

Ĩ(p`) =

(
∂η`
∂p`

)
Ĩ(η`)

(
∂η`
∂p`

)T
= m

{
Diag(p`)

−1 + p−1
`,k+111T

}
.

Therefore we obtain the form of Ĩ(ψ) which was studied in (Raim et al., 2014).

Remark 5.2 (Multiivariate Normal Finite Mixture). Let X1, . . . ,Xm be independent and identically
distributed in Rk as N(µZ ,Σ), with Z ∼ Discrete(1, . . . , s;π). Then T =

∑m
i=1Xi ∼ N(mµZ ,mΣ)

given Z. Let us compare the FIM and approximation with respect to ψ = (µ1, . . . ,µs,π), where Σ
is taken to be known. The Normal subpopulations are exponential families with f(t | mµj ,mΣ) =
exp

{
ηTj t+ma(ηj) + h(t)

}
where ηj = Σ−1µj and ma(ηj) = −m 1

2η
T
j Σηj . Under Z = j, the first and

second derivative of the log-density with respect to ηj are given by

∂

∂ηj
log f(t | ηj) = t−mΣηj and − ∂2

∂ηj∂ηTj
log f(t | ηj) = mΣ.

Therefore the information contained in µj in T under the jth subpopulation is given by

I(µj) =

(
∂ηj
∂µj

)
I(ηj)

(
∂ηj
∂µj

)T
= Σ−1(mΣ)Σ−1 = mΣ−1.

The approximate information matrix for the mixed population with respect to ψ is then

Ĩ(ψ) = Blockdiag(π1F1, . . . , πsFs,Fπ), with Fj = mΣ−1 for j = 1, . . . , s

and Fπ = D−1
π +π−1

s 11T . We will study the closeness between the FIM and the approximation by numerical
experiment. The true information matrix will be computed using the cubature package1 in R for numerical
multivariate integration. Let us concretely take dimension k = 2 and number of populations s = 2, with

Σ =

(
1 0.5

0.5 1

)
and π =

(
0.25
0.75

)
.

Notice that for a mixture with s = 2 components, we have

γ111 = a′(η1)T (η1 − η1)− [a(η1)− a(η1)] = 0,

and likewise γ121 = γ212 = γ222 = 0. We also have

γ112 = a′(η1)T (η1 − η2)− [a(η1)− a(η2)]

= −a′(η1)T (η2 − η1) + [a(η2)− a(η1)] = −γ211

1http://cran.r-project.org/web/packages/cubature

13



and

γ221 = a′(η2)T (η2 − η1)− [a(η2)− a(η1)]

= −a′(η2)T (η1 − η2) + [a(η1)− a(η2)] = −γ122,

where γ211 and γ122 are nonnegative by Lemma 3.4. Therefore, the numbers γ211 and γ122 together are suffi-
cient to describe the orders for the convergence rates. We will consider three scenarios for the subpopulation
means,

• Scenario 1: µ1 = (−1, 1), µ2 = (1,−1), so that γ221 = γ122 = 8.

• Scenario 2: µ1 = (−0.5, 0.5), µ2 = (0.5,−0.5), so that γ221 = γ122 = 2.

• Scenario 3: µ1 = (−0.125, 0.125), µ2 = (0.125,−0.125), so that γ221 = γ122 = 0.125.

Figure 1 plots the mixed populations for the three scenarios. The subpopulations are well-separated in
Scenario 1, while in Scenario 2 there is only a small hint of separation, and in Scenario 3 the two groups are
visually indistinguishable.

Table 1 shows the diagonal elements of Ĩm(ψ) compared with those of Im(ψ), where the latter have been

computed numerically. Also shown is the Frobenius norm of the matrix Ĩm(ψ) − Im(ψ). Note from the
proof of Theorem 3.11 that

‖Ĩm(ψ)− Im(ψ)‖2F = q2O(m2e−
m
2 c

∗∗
).

As expected, the elements of the FIM and the approximation converge together quickly for Scenario 1, and
more slowly for Scenario 2. For Scenario 3, the Frobenius norm initially increases with m because of the
extremely slow convergence rate, and eventually begins decreasing when m is large. Figure 2 plots the norms
for the three scenarios.2

Remark 5.3 (Sampling iid from Normal Finite Mixture). It is natural to ask if there is relationship between
the information matrix of X1, . . . ,Xm independently and identically distributed from f(x | φZ), but where
Z is not observed, and the information matrix of X1, . . . ,Xm independently and identically distributed from
the finite mixture f(x | θ). The convergence theory in this paper was developed strictly for the former case.
As a concrete example, suppose X1, . . . , Xm are Normal random variables. Let Im(θ) denote the information
matrix of T =

∑m
i=1Xi, where θ = (µ1, . . . , µs, π1, . . . , πs−1) and the density of T is

f(x | m,θ) =

s∑
`=1

π`
1√

2πm
exp

{
− 1

2m
(t−mµ`)2

}
.

On the other hand, if Xi are drawn iid from the finite mixture

f(x | θ) =

s∑
`=1

π`
1√
2π

exp

{
−1

2
(x− µ`)2

}
,

then the information matrix is mI1(θ). Suppose we take s = 2 mixing components with µ1 = −1, µ2 = 1,
and π = 1/4. Comparing the two information matrices, we have:

• For m = 3, Im(θ) vs. mI1(θ) is 0.5370 −0.2023 −0.3692
−0.2023 1.9289 −0.4653
−0.3692 −0.4653 4.5916

 vs.

 0.4177 −0.0951 −1.1399
−0.0951 1.6739 −1.7900
−1.1399 −1.7900 8.1871

 .

2The numerical integration sometimes produced inaccurate results, which we believe were caused by the very large limits of
integration we provided to the software. For example, in Scenario 1 when m = 8 and in Scenario 2 when m = 26, I55 = 4.6667
instead of the expected 5.3333. These results have been omitted from the tables and plots.
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Figure 1: Densities for the bivariate normal finite mixture under the three scenarios.
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Table 1: Results for bivariate normal mixture. The diagonals Ĩii are given with corresponding Iii in paren-
theses. The last column shows Frobenius norm of the matrix difference Ĩ − I.

(a) Scenario 1

m Ĩ11 Ĩ22 Ĩ33 Ĩ44 Ĩ55 ‖Ĩ − I‖F
1 0.333 (0.276) 0.333 (0.273) 1 (0.910) 1 (0.920) 5.333 (4.914) 0.6486
2 0.667 (0.643) 0.667 (0.643) 2 (1.971) 2 (1.971) 5.333 (5.290) 0.1419
3 1.000 (0.994) 1.000 (0.994) 3 (2.993) 3 (2.993) 5.333 (5.328) 0.0304
4 1.333 (1.332) 1.333 (1.332) 4 (3.999) 4 (3.999) 5.333 (5.333) 0.0060
5 1.667 (1.666) 1.667 (1.666) 5 (5.000) 5 (5.000) 5.333 (5.333) 0.0011
6 2.000 (2.000) 2.000 (1.999) 6 (6.000) 6 (6.000) 5.333 (5.333) 0.0002

(b) Scenario 2

m Ĩ11 Ĩ22 Ĩ33 Ĩ44 Ĩ55 ‖Ĩ − I‖F
1 0.333 (0.192) 0.333 (0.192) 1 (0.777) 1 (0.777) 5.333 (2.729) 3.0006
2 0.667 (0.452) 0.667 (0.452) 2 (1.670) 2 (1.670) 5.333 (3.968) 2.1626
3 1.000 (0.761) 1.000 (0.761) 3 (2.653) 3 (2.653) 5.333 (4.592) 1.7011
· · · · · · · · · · · · · · · · · · · · ·
23 7.667 (7.666) 7.667 (7.666) 23 (23.000) 23 (23.000) 5.333 (5.333) 0.0013
24 8.000 (8.000) 8.000 (8.000) 24 (24.000) 24 (24.000) 5.333 (5.333) 0.0008
25 8.333 (8.333) 8.333 (8.333) 25 (25.000) 25 (25.000) 5.333 (5.333) 0.0005

(c) Scenario 3

m Ĩ11 Ĩ22 Ĩ33 Ĩ44 Ĩ55 ‖Ĩ − I‖F
1 0.333 (0.100) 0.333 (0.100) 1 (0.746) 1 (0.746) 5.333 (0.245) 5.1939
2 0.667 (0.227) 0.667 (0.227) 2 (1.488) 2 (1.488) 5.333 (0.480) 5.2334
3 1.000 (0.375) 1.000 (0.375) 3 (2.231) 3 (2.231) 5.333 (0.703) 5.3942
· · · · · · · · · · · · · · · · · · · · ·
28 9.333 (6.112) 9.333 (6.117) 28 (22.989) 28 (22.989) 5.333 (3.736) 13.4873
29 9.667 (6.387) 9.667 (6.369) 29 (23.907) 29 (23.913) 5.333 (3.798) 13.7428
30 10.000 (6.598) 10.000 (6.648) 30 (24.839) 30 (24.843) 5.333 (3.857) 13.9949
· · · · · · · · · · · · · · · · · · · · ·
78 26.000 (21.254) 26.000 (22.472) 78 (73.687) 78 (73.685) 5.333 (5.085) 14.0573
79 26.333 (21.627) 26.333 (22.845) 79 (74.743) 79 (74.737) 5.333 (5.093) 14.0086
80 26.667 (22.001) 26.667 (23.218) 80 (75.800) 80 (75.798) 5.333 (5.102) 13.8565
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Figure 2: Frobenius norm of Ĩm − Im, as m varies, for the three normal scenarios.

• For m = 50, Im(θ) vs. mI1(θ) is 12.5 0.0 0.0000
0.0 37.5 0.0000
0.0 0.0 5.3333

 vs.

 6.9612 −1.5853 −18.9977
−1.5853 27.8981 −29.8327
−18.9977 −29.8327 136.4524

 .

It is evident that mI1(θ) does not become close to Ĩm(θ), and therefore the convergence may not occur
when the sample is not drawn in a clustered manner.

Remark 5.4 (Dirichlet-Multinomial). The distribution of a Dirichlet-Multinomial random variable T may
be written as

T | µ ∼ MultJ(m,µ), µ ∼ DirichletJ(α),

which is a continuous mixture of multinomial. Then the complete data density of (T ,µ) is

f(t,µ | α) = f(t | µ)f(µ | α), where

f(t | µ) =
m!

t1! · · · tJ !
µt11 · · ·µ

tJ
J and f(µ | α) =

µα1−1
1 · · ·µαJ−1

J

B(α1, . . . , αJ)
.

Let J = k + 1 to ensure the parameter space of the multinomial family contains an open set in Rk. The
Dirichlet-Multinomial density is obtained by finding the marginal distribution of T , as

f(t | α) =
m!

t1! · · · tJ !

∏J
j=1 Γ(αj + tj)

Γ(
∑J
j=1 αj)

Γ(
∑J
j=1 αj +m)∏J
j=1 Γ(αj)

. (5.1)

Although the results in this paper have been developed for finite mixtures of exponential families and not
continuous mixtures, we may consider the complete data information matrix and ask whether it approxi-
mates the true information matrix. Note that the distribution of T | µ is free of α so that ∂

∂α log f(t,µ |
α) = ∂

∂α log f(µ | α); therefore, the complete data information matrix is just the FIM with respect to
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DirichletJ(α). This is analogous to the finite mixture case, where the first s diagonal blocks correspond to
the support points of the mixing distribution Discrete(φ1, . . . ,φs;π), and the lower-right block of the matrix
corresponds to π. Now the mixing process follows a Dirichlet distribution whose support is the probability
simplex in RJ (i.e. which is known and does not have corresponding entries in the information matrix).
(Neerchal and Morel, 1998, Theorem 1) shows that the FIM of T converges to the FIM of Dirichletk(α) as
m → ∞. Therefore, the results in this paper may extend to more general settings than when the latent
mixing process follows a finite mixture distribution.

Remark 5.5 (Normal-Normal). Let us consider a second continuous mixture along the lines of Example 5.4.
The normal-normal hierarchical model is popular in Bayesian analysis (Gelman et al., 2003, Section 5.4),
with one application (for example) in the Fay-Herriot model for small area estimation (Rao, 2003). The
results from this paper can be applied in the following sense. Suppose

X̄ | µ ∼ N(µ, σ2/m), µ ∼ N(θ, τ2).

and take σ2 and τ2 to be known for the sake of demonstration. Recall that if T =
∑m
i=1Xm ∼ N(mµ,mσ2),

then X̄ = T/m ∼ N(µ, σ2/m) and we may obtain the density of X̄ by transformation using

fX̄(x | θ) =

∫
fX̄(x | µ)fµ(µ | θ)dµ =

∣∣∣∣ ∂T∂X̄
∣∣∣∣ ∫ fT (t | µ)fµ(µ | θ)dµ =

∣∣∣∣ ∂T∂X̄
∣∣∣∣ fT (x | θ).

Therefore, ∂
∂θ log fX̄(x | θ) = ∂

∂θ log fT (t | θ), and the information is the same whether we work with X̄ or
T . It can be shown that marginally, X̄ ∼ N

(
µ, σ2/m+ τ2

)
, therefore the true information about θ in X̄ is

Im(θ) = (σ2/m+ τ2)−1. As in Example 5.4, the complete data information about θ in (X̄, µ) is Ĩ(θ) = τ−2.
Now we have convenient forms for both the true information and complete data information, and it is clear
that Im(θ)→ Ĩ(θ) as m→∞.

Remark 5.6 (Mixture of Finite Mixtures). Consider the random-clumped binomial (RCB) distribution
introduced in (Morel and Nagaraj, 1993) to model binomial data with extra variation. An RCB random
variable T which can be written as T = NY + (X | N), where

Y ∼ Ber(π), N ∼ Bin(m, ρ), (X | N) ∼ Bin(m−N, π),

N of the m trials mimic the outcome in Y , and the remaining trials are drawn independently for X. The
RCB density can be expressed as the finite mixture of two binomial densities RCB(t | m, ρ, π) = πBin(t |
m, ξ1) + (1 − π)Bin(t | m, ξ2) where ξ1 = (1 − ρ)π + ρ and ξ2 = (1 − ρ)π. Consider now a finite mixture of
RCB densities

f(t | m,θ) =

s∑
`=1

w`RCB(t | m, ρ`, π`).

where θ = (ρ1, π1, . . . , ρs, πs, w1, . . . , ws−1). This does not immediately appear to be an exponential family
finite mixture; however, the density may be rewritten as a binomial finite mixture

f(t | m,θ) =

s∑
`=1

w`

2∑
j=1

π`jBin(t | m, ξ`) =

2s∑
`=1

λ`Bin(t | m, ξ`)

where

ξ` =

{
(1− ρ `+1

2
)π `+1

2
+ ρ `+1

2
if ` is odd

(1− ρ`/2)π`/2 o.w.
and λ` =

{
w `+1

2
π `+1

2
if ` is odd

w`/2(1− π`/2) o.w.

for ` = 1, . . . , 2s. It is now clear that the approximate information matrix Ĩm(θ) may be formulated by first
forming the approximate information matrix,

Ĩm(ϑ) = Blockdiag

(
m

ξ1(1− ξ1)
, . . . ,

m

ξ2s(1− ξ2s)
,D−1

λ + λ−1
2s 11T

)
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with respect to ϑ = (ξ1, . . . , ξ2s, λ1, . . . , λ2s−1), and then using the Jacobian of the transformation θ 7→ ϑ to
obtain

Ĩm(θ) =

(
∂θ

∂ϑ

)
Ĩm(ϑ)

(
∂θ

∂ϑ

)T
.

The convergence of Ĩm(θ)− Im(θ) to zero follows from Theorem 3.10.

Remark 5.7 (Weibull Finite Mixture). Consider the Weibull density

f(x | β, λ) =
β

λ

(x
λ

)β−1

e−(x/λ)βI(x > 0),

where β > 0 and λ > 0. For a random variable X with this distribution we will write X ∼ Weibull(β, λ).
Consider the case when λ is known but β is unknown so that {f(· | β, λ) : β > 0} is not an exponential
family. In this case, the score can be written as

∂

∂β
log f(x | β, λ) =

1

β
−
[
1−

(x
λ

)β]
log
(x
λ

)
,

and the Fisher information is therefore found by computing

I(β) =

∫ ∞
0

{
1

β
−
[
1−

(x
λ

)β]
log
(x
λ

)}2

f(x | β, λ)dx. (5.2)

Although the results developed in this paper do not apply because of the departure from exponential family,
we will proceed to investigate the convergence of the approximate information. Suppose X = (X1, . . . , Xm)
given Z are a random sample from Weibull(βZ , λZ) and Z ∼ Discrete(1, . . . , s;π). The marginal density of
X is then given by

f(x | θ) =

s∑
`=1

π`

(β`
λ`

)m( m∏
i=1

xi
λ`

)β`−1

exp

{
−

m∑
i=1

(xi/λ`)
β`

] (5.3)

where θ = (β1. . . . , βs, π1, . . . , πs−1). The corresponding score vector contains entries

∂

∂βa
log f(x | θ) =

πaf(x | βa, λa)

f(x | θ)

[
m

βa
+

m∑
i=1

log xi −m log λa −
m∑
i=1

(
xi
λa

)βa
log

(
xi
λa

)]
,

for a = 1, . . . , s and

∂

∂πa
log f(x | θ) =

f(x | βa, λa)− f(x | βs, λs)
f(x | θ)

for a = 1, . . . , s− 1. The approximate information matrix is given by

Ĩ(θ) = Blockdiag(π1F1, . . . , πsFs,Fπ)

where F` is given by multiplying the Weibull(β`, λ`) information (5.2) by m, and Fπ = D−1
π + π−1

s 11T as
usual for finite mixtures.

Consider two scenarios using densities of the form

πWeibull(β1, λ1) + (1− π)Weibull(β2, λ2),

with
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Table 2: Results for Weibull mixture. The diagonals Ĩii are given with corresponding Iii in parentheses.
The last column shows Frobenius norm of the matrix difference Ĩ − I. All entries of I were approximated
by Monte Carlo simulation.

(a) Scenario 1

m Ĩ11 Ĩ22 Ĩ33 ‖Ĩ − I‖F
1 0.6079 (0.3787) 0.0760 (0.0535) 4.5 (3.2304) 1.3201
2 1.2158 (1.0521) 0.1520 (0.1279) 4.5 (4.0346) 0.5472
3 1.8237 (1.7571) 0.2280 (0.2112) 4.5 (4.3218) 0.2397
4 2.4316 (2.3626) 0.3039 (0.2926) 4.5 (4.4237) 0.1256
5 3.0395 (2.9479) 0.3799 (0.3772) 4.5 (4.4805) 0.1122
6 3.6474 (3.5409) 0.4559 (0.4494) 4.5 (4.4914) 0.1097
7 4.2553 (4.3264) 0.5319 (0.5281) 4.5 (4.5106) 0.0729
8 4.8632 (4.9649) 0.6079 (0.6077) 4.5 (4.4984) 0.1082
9 5.4711 (5.4920) 0.6839 (0.6854) 4.5 (4.5032) 0.0257

10 6.0790 (6.0419) 0.7599 (0.7637) 4.5 (4.5010) 0.0404

(b) Scenario 2

m Ĩ11 Ĩ22 Ĩ33 ‖Ĩ − I‖F
1 0.6079 (0.3919) 0.3039 (0.1696) 4.5 (1.0642) 3.4731
2 1.2158 (0.8718) 0.6079 (0.3840) 4.5 (1.7997) 2.8164
3 1.8237 (1.3980) 0.9118 (0.6135) 4.5 (2.3182) 2.3894
4 2.4316 (1.9380) 1.2158 (0.8703) 4.5 (2.7546) 2.0388
5 3.0395 (2.5468) 1.5197 (1.1423) 4.5 (3.0743) 1.7982
· · · · · · · · · · · · · · ·
23 13.9816 (13.7489) 6.9908 (6.8029) 4.5 (4.4462) 0.3482
24 14.5895 (14.5347) 7.2947 (7.1399) 4.5 (4.4513) 0.2575
25 15.1974 (15.0696) 7.5987 (7.5052) 4.5 (4.4704) 0.2163
26 15.8053 (15.9109) 7.9026 (7.8191) 4.5 (4.4645) 0.1920
27 16.4132 (16.3579) 8.2066 (8.1740) 4.5 (4.4682) 0.1320

• Scenario 1: (β1 = 1, λ1 = 1), (β2 = 4, λ2 = 4), and π = 1/3,

• Scenario 2: (β1 = 1, λ1 = 1), (β2 = 2, λ2 = 2), and π = 1/3.

Figure 3 plots the subpopulations and mixed population for each scenario. Table 2 compares the approximate
and true information matrices for these scenarios, respectively. Evaluation of the approximate information
matrix requires computing (5.2), which we compute by numerical integration. The true FIM is computed
by Monte Carlo simulation using 100,000 samples. We have elected to use a basic Monte Carlo method,
and while a more accurate method could be used, there is clear evidence of the convergence in Table 2. As
expected, it is faster in Scenario 1 where the subpopulations are further apart.

6 Conclusions

This paper extended (Raim et al., 2014) from multinomial finite mixtures to the more general class of
exponential family finite mixtures, making it relevant to statistical analysis beyond binomial and multinomial
data. The main convergence result showed that the true and complete data FIM become close as the
number of observations m becomes large, provided that the observations are drawn according to the clustered
sampling scheme. This provides a justification for the use of the complete data FIM as an approximation to
the true FIM. Rates of convergence were seen to be exponential, but the exponent depends on both m and
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Figure 3: Densities for the Weibull finite mixture under the two scenarios.

the similarity between subpopulations. Example 5.3 suggests that the complete data FIM does not become
close to the information matrix of an independent and identically distributed sample of size m drawn from
the finite mixture.

There are several interesting questions to consider at this point. The setting of exponential family finite
mixtures covers many cases that may be useful in application. Our convergence proof assumes this setting
(e.g. the Ri(·) and Qi(·) functions are critical to the proof), but Examples 5.4 and 5.5 provide evidence
of the convergence even when the latent mixing process has a continuous distribution. Example 5.7 shows
the convergence in a Weibull finite mixture which does not meet the exponential family assumption. These
examples suggest that the convergence result can be generalized further. It would also be of interest to
have a reliable method of correcting accuracy in the approximate information when m is not large or the
subpopulations are not well-separated.
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A Additional Results

Lemma A.1. Suppose A and B are q × q nonsingular matrices. Then A−1 −B−1 = B−1(B −A)A−1.

Lemma A.2. Suppose A,B are q × q symmetric positive definite matrices, and B −A is positive definite.
Then A−1 −B−1 is positive definite.

Lemma A.2. By Lemma A.1, A−1 −B−1 = B−1(B −A)A−1. Suppose λ is an eigenvalue of A−1 −B−1,

21



then

det(B−1(B −A)A−1 − λI) = 0 ⇐⇒ det(B−1/2(B −A)1/2A−1(B −A)1/2B−1/2 − λI) = 0.

Therefore A−1 − B−1 and B−1/2(B − A)1/2A−1(B − A)1/2B−1/2 have the same eigenvalues. Since the
latter is symmetric positive definite, all eigenvalues are positive and the result follows.

The following proof of Theorem 3.11 follows a similar argument to that of (Raim et al., 2014, Theorem
2.5), but is included in its entirety for completeness.

Theorem 3.11. Lemma A.1 gives I−1(θ) − Ĩ−1(θ) = I−1(θ)
[
I(θ)− Ĩ(θ)

]
Ĩ−1(θ) for any θ ∈ Θ. For any

matrix norm,
‖I−1(θ)− Ĩ−1(θ)‖ ≤ ‖I−1(θ)‖ · ‖Ĩ−1(θ)‖ · ‖I(θ)− Ĩ(θ)‖,

therefore it is sufficient to show that the RHS converges to 0 as m → ∞. To do this, we will consider the
three terms separately. Note that for a q × q matrix A, the matrix 2-norm ‖ · ‖2 and the Frobenius norm
‖ · ‖F are related by ‖A‖2 ≤ ‖A‖F ≤

√
q‖A‖2. Therefore, in showing the convergence of ‖Am‖ to zero, we

may consider whichever norm is more convenient.
Recalling that ‖A‖2F=

∑
i

∑
j a

2
ij , Proposition 3.3 and Theorem 3.10 give the simple bound

‖Ĩm(θ)− Im(θ)‖2F = q2O(m2e−
m
2 c

∗∗
).

Next, we have

‖Ĩ−1(θ)‖2F =

s∑
`=1

‖π−1
` F−1

` ‖
2
F + ‖F−1

π ‖2F =

s∑
`=1

m−2π−2
` ‖Ĩ

−1
1 (η`)‖2F + ‖Dπ − ππT ‖2F = ‖Dπ − ππT ‖2F +O(m−2),

where Ĩ1(η`) = Var(U1 | Z = `) is free of m.
Let λ1(m) ≥ · · · ≥ λq(m) be the eigenvalues of I(θ) for a fixed m, all assumed to be positive. Since the

2-norm of a symmetric positive definite matrix is its largest eigenvalue, we have

0 ≤ ‖I−1(θ)‖2 =
1

λq(m)
=

1

min
‖x‖=1

xTI(θ)x
=

1

min
‖x‖=1

{
xT
[
I(θ)− Ĩ(θ)

]
x+ xT Ĩ(θ)x

} .
Notice that

min
‖x‖=1

xT
[
I(θ)− Ĩ(θ)

]
x+ min

‖x‖=1
xT Ĩ(θ)x ≤ min

‖x‖=1

{
xT
[
I(θ)− Ĩ(θ)

]
x+ xT Ĩ(θ)x

}
since both LHS and RHS are lower bounds for xT

[
I(θ)− Ĩ(θ)

]
x+ xT Ĩ(θ)x, and the RHS is the greatest

such bound. Therefore, denoting the eigenvalues of Ĩ(θ) as λ̃1(m) ≥ · · · ≥ λ̃q(m) > 0 and the eigenvalues of

I(θ)− Ĩ(θ) as 0 ≥ β1(m) ≥ · · · ≥ βq(m),

1/λq(m) ≤ 1

min
‖x‖=1

xT
[
I(θ)− Ĩ(θ)

]
x+ min

‖x‖=1
xT Ĩ(θ)x

=
1

βq(m) + λ̃q(m)
.

The mapping from a matrix to its eigenvalues is a continuous function of its elements (Meyer, 2001, Chapter

7), therefore I(θ)− Ĩ(θ)→ 0 as m→∞ implies that βq(m)→ 0. Now for any ε > 0, there exists a positive
integer m0 such that |βq(m)| < ε for all m ≥ m0, and so we have

1

βq(m) + λ̃q(m)
≤ 1

λ̃q(m)− ε
(A.1)
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for all m ≥ m0. Because 1/λ̃q(m) = ‖Ĩ−1
m (θ)‖ = O(1), there exists a K > 0 such that, 1/λ̃q(m) ≤ K.

WLOG assume that ε has been chosen so that λ̃q(m) ≥ 1/K > ε to avoid division by zero. The RHS of
(A.1) is bounded above by (1/K − ε)−1 for all m ≥ m0, which implies ‖I−1(θ)‖2 is bounded when m ≥ m0.

We now have

‖I−1
m (θ)− Ĩ−1

m (θ)‖F ≤ O(1) ·
{
‖Dπ − ππT ‖2F +O(m−2)

}
·
{
q2O(m2e−

m
2 c

∗∗
)
}1/2

,

which gives the result.
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