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Abstract

Finite mixture distributions arise naturally in many applications including clustering and inference
in heterogeneous populations. Such models usually do not yield closed formulas for maximum likelihood
estimates, hence numerical methods such as the well-known Fisher scoring or Expectation-Maximization
(EM) algorithms are used in practice. This work considers an approximate Fisher scoring algorithm
(AFSA) which has previously been used to fit the binomial finite mixture and a special multinomial
finite mixture designed to handle extra variation. AFSA iterations are based on a certain matrix which
approximates the Fisher information matrix. First focusing on the general finite mixture of multinomials,
we show that the AFSA approach is closely related to Expectation-Maximization, and can similarly be
generalized to other finite mixtures and other missing data problems. Like EM, AFSA is more robust to
the choice of initial value than Fisher scoring. A hybrid of AFSA and classical Fisher scoring iterations
provides the best of both computational efficiency and stable convergence properties.

Keywords: Multinomial; Finite mixture; Maximum likelihood; Fisher information matrix; Fisher scoring.

1 Introduction

This paper considers an approximate Fisher scoring technique proposed by Morel and Nagaraj (1993), and
subsequently investigated in (Neerchal and Morel, 1998) and (Neerchal and Morel, 2005). These authors
used the technique to compute maximum likelihood estimates (MLEs) in the study of a multinomial model
with extra variation. The model, now known as the random-clumped multinomial (RCM) distribution, has
made its way into mainstream use; for example, as an analytical tool in the SAS FMM procedure (SAS
Institute Inc., 2011). The RCM distribution can be written as a finite mixture of multinomials, an extension
of (Blischke, 1962, 1964), with specific constraints on parameters. Some details on RCM are given later in
Example 3.1. Approximate Fisher scoring iterations were formulated in (Morel and Nagaraj, 1993) using
the observed score vector along with a certain matrix which is an approximation to the Fisher information
matrix (FIM). The approximation is motivated by the difficulty in formulating the exact FIM, as it does not
have an analytically tractable form and may be expensive to compute accurately by simulation (e.g. Monte
Carlo). The matrix approximation has been justified by convergence results showing that the approximate
FIM and exact FIM become close for large numbers of multinomial trials.

The present work shows that the approximate Fisher scoring algorithm (AFSA) is closely connected to the
extremely popular Expectation-Maximization (EM) algorithm (Dempster et al., 1977). In a neighborhood
of a solution, the solution is seen to be obtained by both algorithms at the same convergence rate. An
explanation for the connection between the two algorithms is provided, in that the FIM approximation is
actually a “complete data” information matrix. Closed-form iterations for both EM and AFSA are also
obtained, giving expressions with related terms. This work focuses on the finite mixture of multinomials
model, motivated by the work on RCM and noting that RCM can be obtained as a special case by enforcing
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some additional constraints. However, once it is established that AFSA is scoring with a complete data
information matrix, its use can be justified for other finite mixture models and missing data problems. For
the cases presented in this paper, an AFSA approach leads to practical procedures for computing MLEs.

A common complaint about EM in its basic form is the convergence rate, which can be slow depending
on the proportion of missing data (Dempster et al., 1977). AFSA will be seen to have a similar convergence
rate to EM. However, both algorithms possess a certain robustness to the initial value compared to faster
methods such as Newton-Raphson or Fisher scoring, and are less likely to get stuck in neighborhoods of
poor local maxima or to wander without any progress to a solution. We therefore recommend a hybrid
algorithm, making use of both AFSA and exact Fisher scoring, where AFSA is used initially to progress to
the neighborhood of a solution, and Fisher scoring is then used to give a fast convergence to that solution.
We demonstrate that the proposed hybrid algorithm combines the best features of both AFSA and Fisher
scoring.

Finite mixture models are widely used in practice and have long been studied in the statistical literature
because of the analytical challenges they present. Titterington et al. (1985) presents an overview of classical
literature on finite mixtures, while McLachlan and Peel (2000) and Frühwirth-Schnatter (2006) give more
modern perspectives. Finite mixtures are often used to model the scenario where observations belong to one
of several subpopulations, but it is unknown to which subpopulation each observation belongs. Hence, finite
mixtures are a natural choice for use in clustering applications or in inference problems when overdispersion
must be addressed (Morel and Neerchal, 2012). The finite mixture of multinomials, which is the focus of this
paper, has been applied to many areas including: clustering of internet traffic (Jorgensen, 2004), text/topic
analysis (Hofmann, 1999), item response theory for analysis of educational or psychological tests (Bolt et al.,
2001), and genetics (Toussile and Gassiat, 2009). Bayesian analysis of the finite mixture of multinomials is
studied by Rufo et al. (2007).

The rest of the paper is organized as follows. In section 2, the approximation to the Fisher information
matrix is presented, along with some of its properties. This approximate information matrix is easily
computed and has an immediate application in Fisher scoring, which is presented in section 3. Simulation
studies are presented in section 4 to illustrate convergence properties of the approximate information matrix
and approximate Fisher scoring. Concluding remarks are given in section 5. Appendix A contains additional
preliminary details and Appendix B presents proofs for most of the results.

2 An Approximation to the Fisher Information Matrix

Consider the multinomial sample space with m trials placed into k categories at random,

Ω =
{

(x1, . . . , xk) : xj ∈ {0, 1, . . . ,m},
k∑
j=1

xj = m
}
.

The standard multinomial density is

f(x;p,m) =
m!

x1! . . . xk!
px1

1 . . . pxkk · I(x ∈ Ω),

where I(·) is the indicator function, and the parameter space is

{
(p1, . . . , pk−1) : 0 < pj < 1,

k−1∑
j=1

pj < 1
}
⊆ Rk−1.

If a random variable X has distribution f(x;p,m), we will write X ∼ Multk(p,m). Following the sampling
and overdispersion literature, we will refer to the number of trials m as the “cluster size” of a multinomial
observation.
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Suppose there are s multinomial populations Multk(p1,m), . . . ,Multk(ps,m), where p` =
(p`1, . . . , p`,k−1) for ` = 1, . . . , s, and the `th population occurs with proportion π` in the mixed popula-
tion. If we draw X from the mixed population, its probability density is a finite mixture of multinomials

f(x;θ,m) =

s∑
`=1

π`f(x;p`,m), with θ = (p1, . . . ,ps,π) (2.1)

and we will write X ∼ MultMixk(θ,m). The dimension of θ is q = s(k− 1) + (s− 1) = sk− 1, disregarding
the redundant parameters p1k, . . . , psk, πs. We will also make use of the following slightly-less-cumbersome
notation for densities: P(x) = f(x;θ,m) for the mixture, and P`(x) = f(x;p`,m) for the `th component of
the mixture. The setting of this paper will be an independent sampleXi ∼ MultMixk(θ,mi), for i = 1, . . . , n,
with cluster sizes not necessarily equal; the resulting likelihood is

L(θ) =

n∏
i=1

{
s∑
`=1

π`

[
mi!

xi1! . . . xik!
pxi1`1 . . . pxik`k · I(xi ∈ Ω)

]}
. (2.2)

The inner summation prevents closed-form likelihood maximization, hence our goal will be to compute the
MLE θ̂ numerically. Some additional preliminaries are given in Appendix A.

In general, the Fisher information matrix (FIM) for mixtures involves a complicated expectation which
does not have a tractable form. Since the multinomial mixture has a finite sample space, it can be computed
naively by using the definition of the expectation

I(θ) =
∑
x∈Ω

{
∂

∂θ
log f(x;θ)

}{
∂

∂θ
log f(x;θ)

}T
f(x;θ), (2.3)

given a particular value for θ. Although the number of terms
(
k+m−1
m

)
in the summation is finite, it grows

quickly with m and k, and this method becomes intractable as m and k increase. For example, when m = 100
and k = 10, the sample space Ω contains more than 4.2 trillion elements. To avoid these potentially expensive
computations, we extend the approximate FIM approach of Morel and Nagaraj (1993) to the general finite
mixture of multinomials. The following theorem presents the approximation and its justification.

Theorem 2.1. Suppose X ∼ MultMixk(θ,m) is a single observation from the mixed population. Denote
the exact FIM with respect to X as I(θ). Then an approximation to the FIM with respect to X is given by
the (sk − 1)× (sk − 1) block-diagonal matrix

Ĩ(θ) := Blockdiag (π1F1, . . . , πsFs,Fπ) ,

where for ` = 1, . . . , s

F` = m
[
D−1
` + p−1

`k 11T
]

and D` = Diag(p`1, . . . , p`,k−1)

are (k − 1)× (k − 1) matrices,

Fπ = D−1
π + π−1

s 11T and Dπ = Diag(π1, . . . , πs−1)

are (s − 1) × (s − 1) matrices, and 1 denotes a vector of ones of the appropriate dimension. To emphasize

the dependence of the FIM and the approximation on m, we will also write Im(θ) and Ĩm(θ). If the vectors

p1, . . . ,ps are distinct (i.e. pa 6= pb for every pair of populations a 6= b), then Im(θ) − Ĩm(θ) → 0 as
m→∞.

Notice that the matrix F` is exactly the FIM of Multk(p`,m) for the `th population, and Fπ is the
FIM of Mults(π, 1) corresponding to the mixing probabilities π; see Appendix A for details. The FIM
approximation turns out to be equivalent to a complete data FIM, as shown below in Proposition 2.2,
which gives an interesting connection to EM. The matrix Ĩ(θ) can therefore be formulated for any finite
mixture whose components have a well-defined FIM, and is not limited to the case of multinomials. Denote
Discrete(a1, . . . , as;π) as the discrete distribution taking values a1, . . . , as with corresponding probabilities
π1, . . . , πs.
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Proposition 2.2. The matrix Ĩ(θ) is equivalent to the FIM of (X, Z), where Z ∼ Discrete(1, . . . , s;π) and
(X | Z = `) ∼ Multk(p`,m).

Corollary 2.3. Suppose Xi ∼ MultMix(θ,mi), i = 1, . . . , n, is an independent sample from the mixed
population with varying cluster sizes, and M = m1 + · · · + mn. Then the approximate FIM with respect
to (X1, . . . ,Xn) is given by Ĩ(θ) = Blockdiag (π1F1, . . . , πsFs,Fπ), where F` = M

[
D−1
` + p−1

`k 11T
]

for

` = 1, . . . , s, and Fπ = n
[
D−1
π + π−1

s 11T
]
.

Proof of Corollary 2.3. Let Ĩmi(θ) represent the FIM approximation with respect to observation Xi. The

result is obtained using Ĩ(θ) = Ĩm1(θ) + · · · + Ĩmn(θ), corresponding to the additive property of exact

FIMs for independent samples. This additive property can be justified by noting that each Ĩmi(θ) is a true
(complete data) FIM, by Proposition 2.2.

Since Ĩ(θ) is a block-diagonal matrix, some useful expressions can be obtained in closed-form.

Corollary 2.4. Let Ĩ(θ) represent the FIM with respect to an independent sample Xi ∼ MultMix(θ,mi),
i = 1, . . . , n. Then:

(a) Ĩ−1(θ) = Blockdiag
(
π−1

1 F−1
1 , . . . , π−1

s F−1
s ,F−1

π

)
, where F−1

` = M−1{D` − p`pT` } for ` = 1, . . . , s
and F−1

π = n−1{Dπ − ππT }.

(b) tr
(
Ĩ(θ)

)
=
∑s
`=1

∑k−1
j=1 Mπ`

{
p−1
`j + p−1

`k

}
+
∑s−1
`=1 n

{
π−1
` + π−1

s

}
.

(c) det
(
Ĩ(θ)

)
=
(∏s

`=1 p
−1
`k

∏k−1
j=1 Mπ`p

−1
`j

)(
π−1
s

∏s−1
`=1 nπ

−1
`

)
.

The determinant and trace of the FIM are not utilized in the computation of MLEs, but are used
in the computation of many statistics in subsequent analysis. In such applications, it may be useful to
have a closed-form approximation for these expressions. As one example, consider the Consistent Akaike
Information Criterion with Fisher Information (CAICF) formulated in (Bozdogan, 1987). The CAICF is an
information-theoretic criterion for model selection, and is a function of the log-determinant of the FIM.

It can also be shown that I−1
m (θ) − Ĩ−1

m (θ) → 0 as m → ∞, which we now state as a theorem. This
result is perhaps more immediately relevant than Theorem 2.1 for the Fisher scoring application presented
in the following section.

Theorem 2.5. Let Im(θ) and Ĩm(θ) be defined as in Theorem 2.1 (namely the FIM and its approximation,

with respect to a single observation with cluster size m). Then I−1
m (θ)− Ĩ−1

m (θ)→ 0 as m→∞.

In the next section, we use the FIM approximation obtained in Theorem 2.1 to define an approximate
Fisher scoring algorithm and investigate its properties.

3 Approximate Fisher Scoring Algorithm

Consider an independent sample with varying cluster sizes Xi ∼ MultMixk(θ,mi) for i = 1, . . . , n. Let θ(0)

be an initial guess for θ, and S(θ) be the score vector with respect to the sample. Then by independence,
S(θ) =

∑n
i=1 S(θ;xi), where S(θ;xi) is the score vector with respect to the ith observation. The Fisher

scoring algorithm is given by computing the iterations

θ(g+1) = θ(g) + I−1(θ(g))S(θ(g)), g = 1, 2, . . . (3.1)

until the convergence criteria ∣∣∣logL(θ(g+1))− logL(θ(g))
∣∣∣ < ε

is met, for some given tolerance ε > 0. In practice, a line search may be used for every iteration after
determining a search direction, and other convergence criteria may be considered, but such modifications

4



will not be considered here. Note that (3.1) uses the exact FIM which may not be easily computable.

We propose to substitute the approximation Ĩ(θ) for I(θ), and will refer to the resulting method as the

approximate Fisher scoring algorithm (AFSA). The expressions for Ĩ(θ) and its inverse are available in
closed-form, as seen in Corollaries 2.3 and 2.4.

AFSA can be applied to finite mixture of multinomial models which are not explicitly in the form of
(2.2). We now give two such examples in which AFSA may be used to compute MLEs.

Example 3.1. The random-clumped multinomial model (Morel and Nagaraj, 1993) is a special case of the
finite mixture of multinomials where the mixing proportions π and the component probability vectors p`,
for ` = 1, . . . , s, are functions of a smaller set of parameters η. The Jacobian of this transformation can be
used to write AFSA iterations in terms of η. Some details for this model are given in Appendix B.

The following example involves a mixture of multinomials where the response probabilities are functions
of covariates. The idea is analogous to the usual multinomial with logit link, but with links corresponding
to each component of the mixture. Again, the Jacobian of a transformation can be used to formulate AFSA
iterations.

Example 3.2. In practice there are often covariates to be linked into the model. As an example showing
how AFSA can be applied, consider the following fixed effect model for response Y ∼ MultMixk(θ(x,w),m)
with covariates x and w. To each p` vector, a generalized logit link will be added

log
p`j(x)

p`k(x)
= η`j , η`j = xTβ`j ,

for ` = 1, . . . , s and j = 1, . . . , k − 1. A proportional odds model will be assumed for π,

log
π1(w) + · · ·+ π`(w)

π`+1(w) + · · ·+ πs(w)
= ηπ` , ηπ` = ν` +wTα,

for ` = 1, . . . , s−1, taking ηπ0 := −∞ and ηπs :=∞. The unknown parameters are the vectors α and β`j , and
the scalars ν`. Denote these parameters collectively as B = (β1, . . . ,βs,ν,α) where β` = (β`1, . . . ,β`,k−1)
and ν = (ν1, . . . ,νs). Expressions for the θ parameters can be obtained as

p`j(x) =
eη`j

1 +
∑k−1
b=1 e

η`b
and π`(w) =

eη
π
`

1 + eη
π
`
− eη

π
`−1

1 + eη
π
`−1

,

for ` = 1, . . . , s and j = 1, . . . , k−1. To implement AFSA, a score vector and FIM approximation are needed.
For the score vector we have

∂

∂B
log f(y;θ) =

(
∂N

∂B

)T (
∂θ

∂N

)T
∂

∂θ
log f(y;θ)

where N = (η1, . . . ,ηs,ηπ), η` = (η`1, . . . , η`,k−1), and ηπ = (ηπ1 , . . . , η
π
s−1). For the FIM we have

I(B) =

(
∂N

∂B

)T (
∂θ

∂N

)T
I(θ)

(
∂θ

∂N

)(
∂N

∂B

)
.

Finding expressions for the two Jacobians is tedious but straightforward. AFSA for an independent sample
Yi ∼ MultMixk(θ(xi,wi),mi), for i = 1, . . . , n, can be written using the above expressions and the fact that
the FIM approximation and score decompose into summations.

We have already seen that the FIM approximation is equivalent to a complete data FIM from EM. There
is also an interesting connection between AFSA and EM, stated as Theorem 3.5, that the iterations are
algebraically related. To see this connection, explicit forms for AFSA and EM iterations are first presented
in Propositions 3.3 and 3.4.
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Proposition 3.3 (AFSA Iterations). The AFSA iterations

θ(g+1) = θ(g) + Ĩ−1(θ(g))S(θ(g)), g = 1, 2, . . . (3.2)

can be written explicitly as

π
(g+1)
` = π

(g)
`

1

n

n∑
i=1

P`(xi)

P(xi)
and p

(g+1)
`j =

1

M

n∑
i=1

P`(xi)

P(xi)
xij − p(g)

`j

[
1− 1

M

n∑
i=1

mi
P`(xi)

P(xi)

]
,

where ` = 1, . . . , s, j = 1, . . . , k, and M = m1 + · · ·+mn.

Proposition 3.4 (EM Iterations). Consider the complete data (Xi, Zi), independent for i = 1, . . . , n, where
Zi ∼ Discrete(1, . . . , s;π) and (Xi | Zi = `) ∼ Multk(p`,mi). Iterations for an EM algorithm are given by

π
(g+1)
` = π

(g)
`

1

n

n∑
i=1

P`(xi)

P(xi)
and p

(g+1)
`j =

∑n
i=1 xij

P`(xi)
P(xi)∑n

i=1mi
P`(xi)
P(xi)

,

for ` = 1, . . . , s and j = 1, . . . , k.

Theorem 3.5. Denote the estimator from EM by θ̂, and the estimator from AFSA by θ̃. Suppose cluster
sizes are equal, so that m1 = · · · = mn = m. If the two algorithms start at the gth iteration with θ(g), then
for the (g + 1)th iteration,

π̃
(g+1)
` = π̂

(g+1)
` and p̃

(g+1)
`j =

(
π̂

(g+1)
`

π
(g)
`

)
p̂

(g+1)
`j +

(
1−

π̂
(g+1)
`

π
(g)
`

)
p

(g)
`j

for ` = 1, . . . , s and j = 1, . . . , k.

Proof of Theorem 3.5. It is immediate from Propositions 3.3 and 3.4 that π̃
(g+1)
` = π̂

(g+1)
` , and that

π̂
(g+1)
`

π
(g)
`

=
1

n

n∑
i=1

P`(xi)

P(xi)
.

Now we have (
π̂

(g+1)
`

π
(g)
`

)
p̂

(g+1)
`j +

(
1−

π̂
(g+1)
`

π
(g)
`

)
p

(g)
`j

=

∑n
i=1 xij

P`(xi)
P(xi)

mn
∑n
i=1

P`(xi)
P(xi)

n∑
i=1

P`(xi)

P(xi)
+ p

(g)
`j

[
1− 1

n

n∑
i=1

P`(xi)

P(xi)

]

=
1

mn

n∑
i=1

P`(xi)

P(xi)
xij + p

(g)
`j

(
1− 1

n

n∑
i=1

P`(xi)

P(xi)

)
= p̃

(g+1)
`j . (3.3)

The AFSA iterate p̃
(g+1)
`j can then be seen as a linear combination of the gth iterate and the (g + 1)th

step of EM. The coefficient π̂
(g+1)
` /π

(g)
` is non-negative but may be larger than 1. Therefore p̃

(g+1)
`j need not

lie strictly between p̂
(g+1)
`j and p

(g)
`j . However, suppose that at the gth step the EM algorithm is close to

convergence. Then

π̂
(g+1)
` ≈ π̂(g)

` ⇐⇒
π̂

(g+1)
`

π̂
(g)
`

≈ 1, for ` = 1, . . . , s.
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From (3.3) we will also have

p̃
(g+1)
`j ≈ p̂(g+1)

`j , for ` = 1, . . . , s, and j = 1, . . . , k.

From this point on, AFSA and EM iterations are approximately the same. Hence, in the vicinity of a
solution, AFSA and EM will produce the same estimate. Note that this result holds for any m, and does
not require a large cluster size justification. For the case of varying cluster sizes m1, . . . ,mn,

π̂
(g+1)
`

π
(g)
`

p̂
(g+1)
`j +

(
1−

π̂
(g+1)
`

π
(g)
`

)
p

(g)
`j

=

∑n
i=1 xij

P`(xi)
P(xi)

n
∑n
i=1mi

P`(xi)
P(xi)

n∑
i=1

P`(xi)

P(xi)
+ p

(g)
`j

[
1− 1

n

n∑
i=1

P`(xi)

P(xi)

]
, (3.4)

which does not simplify to p̃
(g+1)
`j as in the proof of Theorem 3.5. However, this illustrates that EM and

AFSA are still closely related. This also suggests an ad hoc revision to AFSA, letting p̃
(g+1)
`j equal (3.4) so

that the algebraic relationship to EM would be maintained as in (3.3) for the balanced case.
A more general connection is known between EM and iterations of the form

θ(g+1) = θ(g) + I−1
c (θ(g))S(θ(g)), g = 1, 2, . . . , (3.5)

where Ic(θ) is a complete data FIM. Titterington (1984) shows that the two iterations are approximately
equivalent under appropriate regularity conditions. The equivalence is exact when the complete data likeli-
hood is in an exponential family

L(µ) = exp
{
b(x) + ηT t+ a(η)

}
, η = η(µ), t = t(x),

and µ := E[t(X)] is the parameter of interest. The complete data likelihood for our multinomial mixture is
indeed an exponential family, but the parameter of interest θ is a transformation of µ rather than µ itself.
Therefore the equivalance is approximate, as we have seen in Theorem 3.5. The justification for AFSA
leading to this paper followed the historical approach of Blischke (1964), and not from the role of Ĩ(θ) as
a complete data FIM. But the relationship between EM and the iterations (3.5) suggests that approximate
Fisher scoring — that is, scoring with a complete data information matrix — is a reasonable approach for
missing data problems beyond the finite mixture of multinomials setting.

4 Simulation Studies

The main result stated in Theorem 2.1 allows us to approximate the matrix I(θ) by Ĩ(θ), which is much

more easily computed. Theorem 2.5 justifies Ĩ−1(θ) as an approximation for the inverse FIM. In the present
section, simulation studies investigate the quality of the two approximations as a function of m. We also
present studies to demonstrate the convergence speed and solution quality of AFSA.

4.1 Distance between true and approximate FIM

Consider two concepts of distance to compare the closeness of the exact and approximate matrices. Based
on the Frobenius norm ‖A‖2F =

∑
i

∑
j a

2
ij , a distance metric

dF (A,B) = ‖A−B‖F
can be constructed using the sum of squared differences of corresponding elements. This distance will be
larger in general when the magnitudes of the elements are larger, so we will also consider a scaled version

dS(A,B) =
dF (A,B)

‖B‖F
=

√∑
i

∑
j(aij − bij)2∑
i

∑
j b

2
ij

,
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noting that this is not a true distance metric since it is not symmetric. Using these two metrics, we compare
the distance between true and approximate FIMs, and also the distance between their inverses. Consider a
mixture MultMix2(θ,m) of three binomials, with parameters

p = (1/7, 1/3, 2/3) and π = (1/6, 2/6, 3/6).

Figure 1 plots the two distance types for both the FIM and inverse FIM as m varies. Note that distances are
plotted on a log scale, so the vertical axis represents changes in orders of magnitude. To see more concretely
what is being compared, for the moderate cluster size m = 20 we have

27.222 0 0 0 0
0 30 0 0 0
0 0 45 0 0
0 0 0 8 2
0 0 0 2 5

 vs.


14.346 −2.453 −0.184 −3.341 1.625
−2.453 12.605 −6.749 −4.440 −0.944
−0.184 −6.749 34.175 −1.205 −2.914
−3.341 −4.440 −1.205 6.022 2.536

1.625 −0.944 −2.914 2.536 3.621


for the approximate and exact FIMs respectively, and

0.037 0 0 0 0
0 0.033 0 0 0
0 0 0.022 0 0
0 0 0 0.139 −0.056
0 0 0 −0.056 0.222

 vs.


0.216 0.160 0.020 0.366 −0.295
0.160 0.251 0.043 0.383 −0.240
0.020 0.043 0.040 0.053 −0.003
0.366 0.383 0.053 0.953 −0.690
−0.295 −0.240 −0.003 −0.690 0.827


for the approximate and exact inverse FIMs. Since the approximations are block-diagonal matrices they
have no way of capturing the off-diagonal blocks, which are present in the exact matrices but are eventually
dominated by the block-diagonal elements as m → ∞. This emphasizes one obvious disadvantage of the
FIM approximation, which is that it cannot be used to estimate all asymptotic covariances for the MLEs
for a fixed cluster size. For this m = 20 case, the block-diagonal elements for both pairs of matrices are not
very close, although they are at least the same order of magnitude with the same signs. The magnitudes of
elements in the inverse FIMs are in general much smaller than those in the FIMs, so the unscaled distance
will naturally be smaller between the inverses.

Now in Figure 1 consider the distance dF (Ĩ(θ), I(θ)) as m is varied. For the FIM, the distance appears to
be moderate at first, then increasing with m, and finally beginning to vanish as m becomes large. What is not
reflected here is that the magnitudes of the elements themselves are increasing; this is inflating the distance
until the convergence of Thereom 2.1 begins to kick in. Considering the scaled distance dS(Ĩ(θ), I(θ)) helps
to suppress the effect of the element magnitudes and gives a clearer picture of the convergence.

Focusing next on the inverse FIM, consider the distance dF (Ĩ−1(θ), I−1(θ)). For m < 5 the exact FIM
is computationally singular, so its inverse cannot be computed. Note that in this case the conditions for
identifiability are not satisfied (see Appendix A). This is not just a coincidence; there is a known relationship
between model non-identifiability and singularity of the FIM (Rothenberg, 1971). For m between 5 and
about 23, the distance is very large at first because of near-singularity of the FIM, but quickly returns to a
reasonable magnitude. As m increases further, the distance quickly vanishes toward zero. We also consider
the scaled distance dS(Ĩ−1(θ), I−1(θ)). Again, this helps to remove the effects of the element magnitudes,
which are becoming very small as m increases. Even after taking into account the scale of the elements, the
distance between the inverse matrices appears in Figure 1 to be converging more quickly in comparison to
the distance between the FIM and its approximation. This may be interesting from an inference perspective
since the inverse of the FIM corresponds to the asymptotic covariance. For small to medium cluster sizes,
neither the approximate FIM nor its inverse appear to be very close to the exact matrices. The following
example illustrates the use of the approximation in inference.

Example 4.1. Consider the (1− α) level Wald-type and score-type confidence regions,{
θ0 : (θ̂ − θ0)T Ĩ(θ̂) (θ̂ − θ0) ≤ χ2

q,α

}
and

{
θ0 : [S(θ0)]T [Ĩ(θ0)]−1[S(θ0)] ≤ χ2

q,α

}
,
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Figure 1: Distance between exact and approximate FIM and its inverse, as m is varied.

respectively, using the FIM approximation in place of the exact FIM. Such regions are very practical to
compute, but will likely not have the desired coverage for θ. Note that the Wald-type region is based on
the FIM approximation, while the score-type region is based on its inverse. Therefore, we might expect the
score-type region to be closer to the exact score region for moderate cluster sizes because it involves the
inverse matrix.

4.2 Effectiveness of AFSA method: Convergence Speed

We first observe the convergence speed of AFSA and several of its competitors. Consider the mixture of two
trinomials

Yi
iid∼ MultMix3(θ,m = 20), i = 1, . . . , n = 500

p1 = (1/3, 1/3, 1/3), p2 = (0.1, 0.3, 0.6), π = 0.75.

We now apply AFSA, FSA, and EM to a single randomly generated dataset using the same initial value
θ(0). This allows for a simple comparison between the algorithms. Of course, the exact behavior of the
algorithms will vary depending on the sample; the behavior over many samples is studied in section 4.3.
Figure 2 shows the expected counts for n = 500 observations in each of the two subpopulations while Figure
3 shows the particular sample we have drawn from the mixture. The sample displays evidence of two visually
distinguishable modes which correspond to the two subpopulations plotted in Figures 2a and 2b. A larger
proportion of observations belong to the first mode, as expected, since π = 0.75. After the gth iteration of
any of the algorithms, the quantity

δ(g) = logL(θ(g))− logL(θ(g−1))

is measured. The sequence log |δ(g)| is plotted for each algorithm in Figure 4. Note that δ(g) may be negative,
except for example in EM which guarantees an improvement to the log-likelihood in every step. A negative
δ(g) can be interpreted as negative progress, at least from a local maximum. The absolute value is taken
to make plotting possible on the log scale, but some steps with negative progress have been obscured. The
resulting estimates and standard errors for all algorithms are shown in Table 1, and additional summary
information is shown in Table 2.
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Table 1: Estimates and standard errors for the com-
peting algorithms. FSA Hybrid produced similar
results with ε0 set to 0.001, 0.01, 0.1, 1, and 10.

FSA AFSA EM FSA Hybrid

p̂11 0.2744 0.3282 0.3282 0.3282
SE 0.0045 0.0054 — 0.0062

p̂12 0.3189 0.3325 0.3325 0.3325
SE 0.0047 0.0054 — 0.0056

p̂21 0.0804 0.1006 0.1006 0.1006
SE 0.0882 0.0062 — 0.0087

p̂22 0.9193 0.2749 0.2749 0.2749
SE 0.0886 0.0092 — 0.0106

π̂ 0.9990 0.7637 0.7381 0.7381
SE 0.0014 0.0190 — 0.0247

Table 2: Convergence of several competing algo-
rithms. Hybrid FSA is shown with several choices
of the warmup tolerance ε0. Exact FSA corresponds
to ε0 = ∞. Note that a maximum of 100 iterations
was allowed in each case.

method ε0 logLik tol iter

AFSA — -2247.834 7.99× 10−09 38
EM — -2247.834 9.26× 10−09 38
FSA ∞ -2424.330 −4.04× 10−07 100
FSA 10 -2247.834 3.46× 10−09 15
FSA 1 -2247.834 1.44× 10−09 20
FSA 0.1 -2247.834 1.08× 10−10 23
FSA 0.01 -2247.834 1.43× 10−09 25
FSA 0.001 -2247.834 1.28× 10−10 28

We see that AFSA and EM have almost exactly the same rate of convergence toward the same solution,
as suggested by Thereom 3.5. FSA had severe problems, and was not able to converge within 100 iterations;
i.e. δ(g) < 10−8 was not attained. The situation for FSA is worse than it appears in the plot; although
log |δ(g)| is becoming small, FSA’s steps result in both positive and negative δ(g)’s until the iteration limit
is reached. This indicates a failure to approach any maximum of the log-likelihood.

We also consider an FSA hybrid with a “warmup period”, where for a given ε0 > 0 the FIM approximation
is used until the first time δ(g) < ε0 is crossed. Notice that ε0 = ∞ corresponds to “no warmup period”.
After the warmup period, exact Fisher scoring iterations (as in (3.1)) are used until the final convergence
criterion δ(g) < ε is reached. A similar idea has been considered by Neerchal and Morel (2005), who
proposed a two-stage procedure for AFSA in the RCM setting of Example 3.1. The first stage consisted of
running AFSA iterations until convergence, and in the second stage one additional iteration of exact Fisher
scoring was performed. The purpose of the FSA iteration was to improve standard error estimates, which
were previously found to be inaccurate when computed directly from the FIM approximation (Neerchal and
Morel, 1998). Here we note that FSA also offers a faster convergence rate than AFSA, given an initial path
to a solution. Therefore, AFSA can be used in early iterations to move to the vicinity of a solution, then a
switch to FSA will give an accelerated convergence to the solution. This approach depends on the exact FIM
being feasible to compute, so the sample space cannot be too large to make use of the naive summation (2.3).
Hence, there is a trade-off in the choice of ε0 between energy spent on computing the exact FIM for FSA,
and a larger number of iterations required for AFSA. Figure 4 shows that the hybrid strategy is effective,
addressing the erratic behavior of FSA from an arbitrary starting value and the slower convergence rates of
EM and AFSA. Table 2 shows that even a very limited warmup period such as that allowed by ε0 = 10 can
give a good result.

The Newton-Raphson algorithm, which has not been discussed, performed similarly to Fisher scoring
but has issues with singularity of the Hessian in some samples. Standard errors for AFSA were obtained
as
√
a11, . . . ,

√
aqq, denoting Ĩ−1(θ̂) = ((aij)). For FSA and FSA-Hybrid, the inverse of the exact FIM was

used instead. The basic EM algorithm does not yield standard error estimates. Several extensions have
been proposed to address this, such as by Louis (1982) and Meng and Rubin (1991). In light of Theorem

3.5, standard errors from Ĩ−1(θ) evaluated at EM estimates could also be used to obtain similar results to
AFSA.

4.3 Effectiveness of AFSA method: Monte Carlo Study

We next consider a Monte Carlo study of the difference between AFSA and EM estimators to assess the
behavior of AFSA over a large number of samples. EM is considered to produce reliable estimates, hence it
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Figure 2: Expected counts, rounded to the nearest integer, for n = 500 observations sampled independently
from each of the two subpopulations. Counts rounded to zero are not shown.
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is desired to achieve solutions close to EM with high probability. Observations were generated from

Yi
ind∼ MultMixk(θ,mi), i = 1, . . . , n = 500,

given varying cluster sizes m1, . . . ,mn which themselves were generated as

Z1, . . . , Zn
iid∼ Gamma(α, β), mi = dZie.

Several different settings of θ are considered, with s = 2 mixing components and proportion π = 0.75 for
the first component. The parameters α and β were chosen such that E(Zi) = αβ = 20. This gives β = 20/α
so that only α is free, and Var(Zi) = αβ2 = 400/α can be chosen as desired. The expectation and variance
of mi are intuitively similar to Zi, and their exact values may be computed numerically.

Once the n observations are generated, an AFSA estimator θ̃ and an EM estimator θ̂ are fit. This process
is repeated 1000 times yielding θ̃(r) and θ̂(r) for r = 1, . . . , 1000. A default initial value was selected for
each setting of θ and is used for both algorithms in every repetition. To measure the closeness of the two
estimators,

D =
1

1000

1000∑
r=1

Dr, where Dr =

q∨
j=1

∣∣∣∣∣ θ̃
(r)
j − θ̂

(r)
j

θ̃
(r)
j

∣∣∣∣∣
is the maximum relative difference taken over all components of θ, averaged over all repetitions. Here

∨
represents the “maximum” operator. Notice that obtaining a good result for D depends on the vectors θ̂
and θ̃ being ordered in the same way. To help ensure this, we add the constraint π1 > · · · > πs, which is
enforced in both algorithms by reordering the estimates for π1, . . . , πs and p1, . . . ,ps accordingly after every
iteration. Table 3 shows the results of the simulation. Nine different scenarios for θ are considered. The
cluster sizes m1, . . . ,mn are selected in three different ways: a balanced case where mi = 20 for i = 1, . . . , n,
cluster sizes selected at random with small variability (using α = 100), and cluster sizes selected at random
with moderate variability (using α = 25). As seen in section 4.1, clusters sizes on the order of m = 20 may
not provide a high accuracy of the FIM approximation to the exact FIM, but are adequate here for AFSA.

Both AFSA and EM are susceptible to finding local maxima of the likelihood, as are all iterative opti-
mization procedures, but in this experiment AFSA encountered the problem much more frequently. These
cases stood out because the local maxima occurred with one of the mixing proportions or category proba-
bilities close to zero, i.e. a convergence to the boundary of the parameter space. This is especially apparent
in our Monte Carlo statistic D, which can become very large if this occurs even once for a given scenario.
The problem occurred most frequently for the case p1 = (0.1, 0.3) and p2 = (1/3, 1/3). To counter this,
we restarted AFSA with a random starting value whenever a solution with any estimate less than 0.01 was
obtained. For this experiment, no more than 15 out of 1000 samples required a restart, and no more than
two restarts were needed for the same sample. In practice, we recommend starting AFSA with several initial
values to ensure that any solutions on the boundary are not missteps taken by the algorithm.

The entries in Table 3 show that small to moderate variation of the cluster sizes does not have a significant
impact on the equivalence of AFSA and EM. On the other hand, as p1 and p2 are moved closer together,
the quantity D tends to become larger. Theorem 2.1 depends on the distinctness of the category probability
vectors, so the quality of the FIM approximation at moderate cluster sizes may begin to suffer in this case.
The estimation problem itself also intuitively becomes more difficult as p1 and p2 become closer. Although
the D value in the three columns for Scenario E are on the order 10−3, they are reduced to the order 10−6

upon removal of one one large outlier in each case. Recall that the dimension of pi is k − 1; it can be seen
from Table 3 that increasing k from 2 to 4 does not necessarily have a negative effect on the results.

Table 4 shows the results of a follow-up study to compare the convergence behavior of AFSA and EM
over a large number of samples, as cluster size and separation between mixture components are varied. Here
we consider the mixture of two binomials, where p2 = 0.5 is fixed and p1 varies in scenarios A–D which match
to Table 3, and a common m is used for all observations. For each setting of m and p1, 1000 samples were
generated, and AFSA and EM were applied in turn to each sample. As expected, the number of iterations
required for convergence is similar for both algorithms, and more iterations are required to find a suitable
solution when |p2 − p1| is small or when m is small.
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Table 3: Closeness between AFSA and EM estimates, over 1000 samples. Scenarios A–D represent binomial
mixtures, E–G represent trinomial mixtures, and H-I represent multinomial mixtures with k = 4 categories.

(kth probability not shown) Cluster sizes equal α = 100 α = 25
p1 p2 mi = 20 Var(mi) ≈ 4.083 Var(mi) ≈ 16.083

A.
(
0.1

) (
0.5

)
2.178× 10−6 2.019× 10−6 2.080× 10−6

B.
(
0.3

) (
0.5

)
4.073× 10−5 3.501× 10−5 3.890× 10−5

C.
(
0.35

) (
0.5

)
8.683× 10−4 2.625× 10−4 2.738× 10−4

D.
(
0.4

) (
0.5

)
9.954× 10−3 6.206× 10−2 6.563× 10−2

E.
(
0.1, 0.3

) (
1/3, 1/3

)
1.342× 10−3 1.009× 10−3 1.878× 10−3

F.
(
0.1, 0.5

) (
1/3, 1/3

)
1.408× 10−6 1.338× 10−6 1.334× 10−6

G.
(
0.3, 0.5

) (
1/3, 1/3

)
3.884× 10−6 3.943× 10−6 3.885× 10−6

H.
(
0.1, 0.1, 0.3

) (
0.25, 0.25, 0.25

)
8.389× 10−7 8.251× 10−7 8.440× 10−7

I.
(
0.1, 0.2, 0.3

) (
0.25, 0.25, 0.25

)
1.523× 10−6 1.472× 10−6 1.408× 10−6

Table 4: Convergence characteristics of AFSA and EM over 1000 samples. Here p2 = 0.5 is fixed. The
reported quantity is the average number of algorithm iterations per sample. Note that the tolerance for
convergence was set to 10−8 and a maximum of 1000 iterations was allowed for each algorithm per sample.

m = 20 m = 50 m = 100
p1 AFSA EM AFSA EM AFSA EM

A. 0.1 12.60 12.64 6.13 5.58 4.41 3.32
B. 0.3 142.79 142.67 30.37 30.51 12.20 12.24
C. 0.35 ∗435.90 ∗435.62 77.85 77.55 25.98 25.72
D. 0.4 ∗795.36 ∗796.15 ∗348.55 ∗345.50 84.67 82.93

∗Results where some samples failed to converge within the allowed number of iterations. For the case (D, m = 20),
this occurred with AFSA in 576 samples and with EM in 579 samples. For (C, m = 20), both algorithms failed to
converge in 74 samples, while (D, m = 50) resulted in both algorithms failing to converge 31 samples.
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5 Conclusions

A large cluster approximation was presented for the FIM of the finite mixture of multinonials model (The-
orem 2.1). This matrix has a convenient block-diagonal form where each non-zero block is the FIM of a
standard multinomial observation. Furthermore, the approximation is equivalent to a complete data FIM,
had population labels been recorded for each observation (Proposition 2.2). Using this approximation to the
FIM, we formulated an approximate Fisher scoring algorithm (AFSA), and showed that its iterations are
closely related to the well-known Expectation-Maximization (EM) algorithm for finite mixtures (Theorem
3.5). Simulations show that, although large cluster sizes are needed before the exact and approximate FIM
are close, the approximation is quite effective in obtaining estimates through AFSA. However, for stan-
dard error computations and ensuing inference, it is advisable to use the exact FIM, especially for small to
moderate cluster sizes.

We have seen that AFSA (and also EM) has an advantage, in terms of robustness to initial values, over
the more standard Fisher scoring and Newton-Raphson algorithms. This comes at the cost of a slower
convergence rate. For Newton-Raphson iterations, the invertibility of the Hessian depends on the sample,
in addition to the current iterate θ(g) and the model. Fisher scoring iterations can be computed when the
cluster size is not too small (ensuring that the FIM is non-singular), but may converge to a poor solution
or be unable to make progress at all using an arbitrarily chosen starting point. On the other hand, Fisher
scoring converges very quickly given a sufficiently good starting point. Therefore, we recommend a hybrid
approach: use AFSA iterations for an initial warmup period, then switch to Fisher scoring once a path
toward a solution has been established.

Although AFSA and EM are closely related and often tend toward the same solution, AFSA is not
necessarily restricted to the parameter space of the problem. AFSA also tended to converge to the boundary
of the space more often than EM. These issues are not specific to AFSA; Newton-type iterations in general
are prone to them without additional precautions. For the simulations in this work, we have simply restarted
AFSA with a different initial value if it left the space or converged to the boundary. It is recommended to try
several initial values in practice and check the solutions; this not only avoids selecting poor solutions on the
boundary, but also improves the chance of finding a global maximum. Other measures could be considered
as well, such as manipulating the step size at each iteration or reparameterizing the problem so that the
parameter space is Rq. These heuristics may be preferred to more complicated algorithms for constrained
optimization.

AFSA may be preferable to EM in situations where it is more natural to formulate. Derivation of the
E-step conditional log-likelihood may involve evaluating a complicated expectation, but this is not required
for AFSA. On the other hand, AFSA requires the score vector for the observed data; this may involve a
messy differentiation but is arguably easier to address numerically than the E-step. AFSA can be formulated
for special finite mixtures of multinomials, such as the random-clumped multinomial from Example 3.1 and
the mixture with linked regressions from Example 3.2, using Jacobians of appropriate transformations.

It is interesting to note the relationship between FSA, AFSA, and EM as Newton-type algorithms.
Fisher scoring is a classic algorithm where the Hessian is replaced by its expectation. In AFSA, the Hessian
is replaced instead by a complete data FIM. EM can be considered a Newton-type algorithm also, where the
entire likelihood is replaced by a complete data likelihood with missing data integrated out. In this light,
EM and AFSA iterations are seen to be approximately equivalent. Because the AFSA approach is seen to
be scoring with a complete data FIM, it can be applied to other finite mixture models and other missing
data problems, similarly to EM. So far, convergence between the complete data FIM and exact FIM has
only been established for binomial and multinomial mixtures and is obtained by letting the number of trials
m tend to infinity.

Several interesting questions can be raised at this point. There is a relationship between AFSA and
EM which extends beyond the multinomial mixture; we wonder if the relationship between the exact and
complete data information matrix generalizes as well. Also, for the present multinomial mixture, perhaps
there is a small cluster bias correction that could be applied to improve the approximation. This might allow
standard errors and confidence regions, such as those in Example 4.1, to be reliably computed from the FIM
approximation.
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A Preliminaries and Notation

Given an independent sample X1, . . . ,Xn with joint likelihood L(θ) and θ having dimension q×1, the score
vector is

S(θ) =
∂

∂θ
logL(θ) =

n∑
i=1

∂

∂θ
log f(xi;θ).

For Xi ∼ Multk(p,m) the score vector for a single observation can be obtained from

∂

∂pa
log f(x;p,m) =

∂

∂pa

x1 log p1 + · · ·+ xk−1 log pk−1 + xk log

1−
k−1∑
j=1

pj


= xa/pa − xk/pk, (A.1)

so that

∂

∂p
log f(x;p,m) =

 x1/p1

...
xk−1/pk−1

−
xk/pk...
xk/pk

 = D−1x−k −
xk
pk

1,

denoting D := Diag(p1, . . . , pk−1) and x−k := (x1, . . . , xk−1).
The score vector for a single observation X ∼ MultMixk(θ,m) can also be obtained,

∂ log P(x)

∂pa
=
∂ log{

∑s
`=1 π` P`(x)}
∂pa

=
1

P(x)
πa
∂ Pa(x)

∂pa

=
πa Pa(x)

P(x)

∂ log Pa(x)

∂pa

=
πa Pa(x)

P(x)

[
D−1
a x−k −

xk
pak

1

]
, a = 1, . . . , s,

where Da := Diag(pa1, . . . , pa,k−1), and

∂ log P(x)

∂πa
=
∂ log{

∑s
`=1 π` P`(x)}
∂πa

=
Pa(x)− Ps(x)

P(x)
, a = 1, . . . , s− 1.

Next, consider the q × q FIM for the independent sample X1, . . . ,Xn

I(θ) = Var(S(θ)) = E

[{
∂

∂θ
logL(θ)

}{
∂

∂θ
logL(θ)

}T]

= E

[
− ∂2

∂θ∂θT
logL(θ)

]
.
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The last equality holds under appropriate regularity conditions. For the multinomial FIM, we may use (A.1)
to obtain

∂

∂pa

∂

∂pb
log f(x;p,m) =

{
xk/p

2
k if a 6= b

−xa/p2
a − xk/p2

k otherwise

and so

∂

∂p∂pT
log f(x;p,m) = Diag

(
−x1

p2
1

, . . . ,−xk−1

p2
k−1

)
− xk
p2
k

11T .

Therefore, we have

I(p) = E

(
− ∂

∂p∂pT
log f(x;p,m)

)
= Diag

(
mp1

p2
1

, . . . ,
mpk−1

p2
k−1

)
+
mpk
p2
k

11T

= m
(
D−1 + p−1

k 11T
)
.

The score vector and Hessian of the log-likelihood can be used to implement the Newton-Raphson algorithm,
where the (g + 1)th iteration is given by

θ(g+1) = θ(g) −
{

∂2

∂θ∂θT
logL(θ(g))

}−1

S(θ(g)).

The Hessian may be replaced with the FIM to implement Fisher Scoring

θ(g+1) = θ(g) + I−1(θ(g)) S(θ(g)).

In order for the estimation problem to be well-defined in the first place, the model must be identifiable.
For finite mixtures, this is taken to mean that the equality

s∑
`=1

π`f(x;θ`)
a.s.
=

v∑
`=1

λ`f(x; ξ`)

implies s = v, π` = λρ(`), and p` = ξρ(`) for all ` = 1, . . . , s, where (ρ(1), . . . , ρ(s)) is some permutation
of (1, . . . , s) (McLachlan and Peel, 2000, section 1.14). Chandra (1977) provides some insight into the
identifiability issue, and relates the identifiability of a family of multivariate mixtures to its corresponding
marginal mixtures. In the present case, the multivariate mixtures consist of multinomial densities, and the
univariate marginal densities are binomials. It is known that a finite mixture of s components from the
family { Multk(m,p) : p ∈ (0, 1)k,

∑k
j=1 pj = 1 } is identifiable if and only if m ≥ 2s − 1; see, for example,

Elmore and Wang (2003). Then a sufficient condition for model (2.2) to be identifiable is that mi ≥ 2s− 1
for at least one observation. This can be seen by the following lemma.

Lemma A.1. Suppose Xi
ind∼ fi(x;θ), i = 1, . . . , n, where fi share a common parameter θ, and for at least

one r ∈ {1, . . . , n} the family {fr(·;θ) : θ ∈ Θ} is identifiable. Then the joint model is identifiable.

Proof. WLOG assume that r = 1, and suppose we have

n∏
i=1

fi(xi;θ)
a.s.
=

n∏
i=1

fi(xi; ξ).

Integrating both sides with respect to x2, . . . ,xn, using the appropriate dominating measure,

f1(x1;θ)
a.s.
= f1(x1; ξ).

Since the family {f1(·;θ) : θ ∈ Θ} is identifiable, this implies θ = ξ. Hence the joint family {
∏n
i=1 fi(·;θ) :

θ ∈ Θ} is identifiable.
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B Additional Proofs

To prove Theorem 2.1, we will first establish a key inequality. A similar strategy was used by Morel and
Nagaraj (1991), but they considered the special case k = s, so that the number of mixture components is
equal to the number of categories within each component. Here we generalize their argument to where k = s
need not hold. The original proof was inspired by the following inequality from Okamoto (1959) for the tail
probability of the binomial distribution, which was also considered by Blischke (1962).

Lemma B.1. Suppose X ∼ Binomial(m, p), then for c ≥ 0,

i. P(X/m− p ≥ c) ≤ e−2mc2 ,

ii. P(X/m− p ≤ −c) ≤ e−2mc2 .

Theorem B.2. For a given index b ∈ {1, . . . , s} we have

∑
x∈Ω

s∑
a 6=b

πa Pa(x) Pb(x)

P(x)
≤ 2

πb

s∑
a6=b

e−
m
2 δ

2
ab ,

where δab =
∨k−1
j=1 (paj − pbj).

Proof. For a, b ∈ {1, . . . , s}, assume WLOG that

δab :=

k−1∨
j=1

(paj − pbj) = (paL − pbL), for some L ∈ {1, . . . k − 1}

is positive. Denote as Ω(xj) the multinomial sample space when the jth element of x is fixed at a number
xj . Then we have

∑
x∈Ω

πa Pa(x) Pb(x)

P(x)
=

m∑
xL=0

∑
x∈Ω(xL)

πa Pa(x) Pb(x)

P(x)

=
∑

xL≤m2 (paL+pbL)

∑
x∈Ω(xL)

πa Pa(x)
Pb(x)

P(x)
+

∑
xL>

m
2 (paL+pbL)

∑
x∈Ω(xL)

πa Pa(x)

P(x)
Pb(x)

≤
∑

xL≤m2 (paL+pbL)

∑
x∈Ω(xL)

πa
πb

Pa(x) +
∑

xL>
m
2 (paL+pbL)

∑
x∈Ω(xL)

Pb(x)

=
πa
πb

∑
xL≤m2 (paL+pbL)

∑
x∈Ω(xL)

Pa(x) +
∑

xL>
m
2 (paL+pbL)

∑
x∈Ω(xL)

Pb(x). (B.1)

Notice that the last statement above consists of marginal probabilities for the Lth coordinate of k-dimensional
multinomials, which are binomial probabilities. Following Blischke (1962), suppose A ∼ Binomial(m, paL)
and B ∼ Binomial(m, pbL), then (B.1) is equal to

πa
πb

P
{
A ≤ m

2
(paL + pbL)

}
+ P

{
B >

m

2
(paL + pbL)

}
. (B.2)

Taking c = 1
2 (paL − pbL) yields

m(paL − c) =
m

2
(paL + pbL),

m(pbL + c) =
m

2
(paL + pbL),
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and (B.2) is equivalent to

πa
πb

P {A ≤ m(paL − c)}+ P {B > m(pbL + c)}

=
πa
πb

P {A/m− paL ≤ −c}+ P {B/m− pbL > c}

≤ πa
πb
e−2mc2 + e−2mc2 , by Lemma B.1

=

(
πa + πb
πb

)
e−

1
2mδ

2
ab .

Now we have∑
x∈Ω

s∑
a 6=b

πa Pa(x) Pb(x)

P(x)
=

s∑
a 6=b

∑
x∈Ω

πa Pa(x) Pb(x)

P(x)
≤

s∑
a 6=b

πa + πb
πb

e−
m
2 δ

2
ab ≤ 2

πb

s∑
a6=b

e−
m
2 δ

2
ab .

Corollary B.3. The following intermediate result was obtained in the proof of Theorem B.2∑
x∈Ω

πa Pa(x) Pb(x)

P(x)
≤
(
πa + πb
πb

)
e−

1
2mδ

2
ab ≤ 2

πb
e−

1
2mδ

2
ab .

We are now prepared to prove Theorem 2.1. Following the strategy of Morel and Nagaraj (1991), we

consider the difference between the I(θ) and the limiting matrix Ĩ(θ) element by element for finite cluster
sizes and obtain bounds which converge to zero as m→∞. The bound used by Morel and Nagaraj (1991)
is slightly different than ours, since we do not require that k = s.

Proof of Theorem 2.1. Partition the exact FIM as

I(θ) =

(
C11 C12

C21 C22

)
where

C11 =

A11 . . . A1s

...
. . .

...
As1 . . . Ass

 , C12 =

A1π

...
Asπ

 = CT
21, C22 = Aππ,

and

Aab = E

({
∂ log f(x;θ)

∂pa

}{
∂ log f(x;θ)

∂pb

}T)
, for a = 1, . . . , s and b = 1, . . . , s,

Aπb = E

({
∂ log f(x;θ)

∂π

}{
∂ log f(x;θ)

∂pb

}T)
, for b = 1, . . . , s

= AT
bπ,

Aππ = E

({
∂ log f(x;θ)

∂π

}{
∂ log f(x;θ)

∂π

}T)
.

We must show that as m→∞,

C11 − Blockdiag(π1F1, . . . , πsFs)→ 0, (B.3)

CT
21 = C12 → 0, (B.4)

C22 − Fπ → 0. (B.5)

The reader may also refer to Morel and Nagaraj (1991) which addresses the k = s case.
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Case (i) First consider the (i, i)th block of C11 − Blockdiag(π1F1, . . . , πsFs)

Di (Aii − πiFi)Di

= Di

{
E

[{
∂

∂pi
log P(x)

}{
∂

∂pi
log P(x)

}T]
− πiFi

}
Di

= π2
iDi E

[
P2
i (x)

P2(x)

∂ log Pi(x)

∂pi

∂ log Pi(x)

∂pTi

]
Di − πiDiFiDi

= π2
i

∑
x∈Ω

Pi(x)

P(x)

(
x−k −

xk
pik
pi

)(
x−k −

xk
pik
pi

)T
Pi(x)

− π2
i

∑
x∈Ω

1

πi

(
x−k −

xk
pik
pi

)(
x−k −

xk
pik
pi

)T
Pi(x) (B.6)

= π2
i

∑
x∈Ω

(
x−k −

xk
pik
pi

)(
x−k −

xk
pik
pi

)T (
Pi(x)

P(x)
− 1

πi

)
Pi(x)

=
πi
p2
ik

∑
x∈Ω

(pikx−k − xkpi) (pikx−k − xkpi)T
(
πi Pi(x)− P(x)

P(x)

)
Pi(x). (B.7)

where xk is the kth element of x and x−k = (x1, . . . , xk−1). We have pre and post-multiplied by Di so that
Theorem B.2 can be applied. But note that since Di does not vary over m,

Di {Aii − πiFi}Di → 0 =⇒ Aii − πiFi → 0, as m→∞.

We have also used the fact in step (B.6) that

Di
∂ log Pi(x)

∂pi
= Di

{
D−1
i x−k −

xk
pik

1

}
= x−k −

xk
pik
pi.

We next have for r, s ∈ {1, . . . , k − 1}

[pikxr − xkpir]2 ≤ [xr +mpir]
2 ≤ 4m2.

Also,

0 ≤
[
[pikxr − xkpir] + [pikxs − xkpis]

]2
= [pikxr − xkpir]2 + [pikxs − xkpis]2 + 2[pikxr − xkpir][pikxs − xkpis]

and similarly

0 ≤
[
[pikxr − xkpir]− [pikxs − xkpis]

]2
= [pikxr − xkpir]2 + [pikxs − xkpis]2 − 2[pikxr − xkpir][pikxs − xkpis],

which implies that ∣∣∣[pikxr − xkpir][pikxs − xkpis]∣∣∣ ≤ 1

2

{
[xr +mpir]

2 + [xs +mpis]
2
}

≤ 4m2.
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Notice that this bound is free of r and s, so it holds uniformly over all r, s ∈ {1, . . . , k− 1}. If we denote the
(r, s)th element of the matrix given in (B.7) by εrs, we have

|εrs| ≤
4πim

2

p2
ik

∑
x∈Ω

P(x)− πi Pi(x)

P(x)
Pi(x) =

4πim
2

p2
ik

∑
x∈Ω

s∑
j 6=i

πj Pi(x) Pj(x)

P(x)

≤ 8m2

p2
ik

s∑
j 6=i

e−
m
2 δ

2
ij ,

by Theorem B.2. By assumption, δ2
ij > 0 for i 6= j, and therefore εrs → 0 as m→∞.

Case (ii) Next, consider the (i, j)th block of C11 − Blockdiag(π1F1, . . . , πsFs) where i 6= j.

DiAijDj

= Di

{
E

[{
∂

∂pi
log P(x)

}{
∂

∂pj
log P(x)

}T]}
Dj

= Di

[
E

(
πiπj

P2(x)

∂ Pi(x)

∂pi

∂ Pj(x)

∂pTj

)]
Dj

= πiπjDi

[
E

(
Pi(x) Pj(x)

P2(x)

∂ log Pi(x)

∂pi

∂ log Pj(x)

∂pTj

)]
Dj

= πiπj
∑
x∈Ω

Pi(x) Pj(x)

P2(x)

(
x−k −

xk
pik
pi

)(
x−k −

xk
pjk
pj

)T
P(x)

=
πiπj
pikpjk

∑
x∈Ω

Pi(x) Pj(x)

P(x)
(pikx−k − xkpi) (pjkx−k − xkpj)T . (B.8)

If we now denote the (r, s)th element of the matrix given in (B.8) by εrs, we have

|εrs| ≤
4πiπjm

2

pikpjk

∑
x∈Ω

Pi(x) Pj(x)

P(x)
≤ 8m2

pikpjk
e−

m
2 δ

2
ij

for all (r, s), applying Theorem B.3 and a similar argument to Case (i). Since δ2
ij > 0 for i 6= j, εrs → 0 as

m→∞.

Case (iii) Now consider the matrix

Aππ − Fπ (B.9)

= E

[{
∂

∂π
log P(x)

}{
∂

∂π
log P(x)

}T]
− Fπ

= E

 1

P2(x)


 P1(x)

...
Ps−1(x)

− Ps(x) · 1



 P1(x)

...
Ps−1(x)

− Ps(x) · 1


T
− (D−1

π + π−1
s 11T

)
.
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Pick out the (a, a)th entry which we will denote as εaa. We have

εaa = E

[
[Pa(x)− Ps(x)]2

P2(x)

]
− (π−1

a + π−1
s )

=
∑
x∈Ω

P2
a(x)− 2 Pa(x) Ps(x) + P2

s(x)

P(x)
− (π−1

a + π−1
s )

=
∑
x∈Ω

(
P2
a(x)

P(x)
− Pa(x)

πa

)
+
∑
x∈Ω

(
P2
s(x)

P(x)
− Ps(x)

πs

)
− 2

∑
x∈Ω

Pa(x) Ps(x)

P(x)

=
1

πa

∑
x∈Ω

πa Pa(x)− P(x)

P(x)
Pa(x) +

1

πs

∑
x∈Ω

πs Ps(x)− P(x)

P(x)
Ps(x)− 2

∑
x∈Ω

Pa(x) Ps(x)

P(x)

= − 1

πa

∑
x∈Ω

s∑
` 6=a

π` P`(x) Pa(x)

P(x)
− 1

πs

∑
x∈Ω

s∑
6̀=s

π` P`(x) Ps(x)

P(x)
− 2

πa

∑
x∈Ω

πa Pa(x) Ps(x)

P(x)

Then by the triangle inequality,

|εaa| ≤
2

π2
a

s∑
6̀=a

e−
m
2 δ

2
`a +

2

π2
s

s∑
6̀=s

e−
m
2 δ

2
`s +

4

πaπs
e−

m
2 δ

2
as ,

applying Theorem B.2 to the first two terms, and Corollary B.3 to the last term. Since δ2
ij > 0 for i 6= j, we

have εaa → 0 for a ∈ {1, . . . , s− 1} as m→∞.

Case (iv) Consider again the matrix Aππ − Fπ from (B.9), but now the case where a 6= b. We have

εab = E

[
[Pa(x)− Ps(x)][Pb(x)− Ps(x)]

P2(x)
− π−1

s

]
=
∑
x∈Ω

Pa(x) Pb(x)

P(x)
−
∑
x∈Ω

Pa(x) Ps(x)

P(x)
−
∑
x∈Ω

Pb(x) Ps(x)

P(x)
+
∑
x∈Ω

P2
s(x)

P(x)
− π−1

s . (B.10)

We can use Corollary B.3 to handle the first three terms. For the last term, notice that

∑
x∈Ω

P2
s(x)

P(x)
− 1

πs
=
∑
x∈Ω

(
Ps(x)

P(x)
− 1

πs

)
Ps(x) = − 1

πs

∑
x∈Ω

∑
` 6=s

π` P`(x) Ps(x)

P(x)
.

Now, applying the triangle inequality to (B.10),

|εab| ≤
2

πaπb
e−

m
2 δ

2
ab +

2

πaπs
e−

m
2 δ

2
as +

2

πbπs
e−

m
2 δ

2
bs +

2

π2
s

∑
6̀=s

e−
m
2 δ

2
`s

Since δ2
ij > 0 for i 6= j, we have εab → 0 for a 6= b in {1, . . . , s− 1} as m→∞.
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Case (v) Finally, consider the following matrix, for j = 1, . . . , s,

AπjDj = E

[{
∂

∂π
logP (x)

}{
∂

∂pj
logP (x)

}T]
Dj

= E

 1

P (x)

 P1(x)− Ps(x)
...

Ps−1(x)− Ps(x)

 πjPj(x)

P (x)

(
Djx−k −

xk
pk

1

)TDj

= E

πjPj(x)

P 2(x)

 P1(x)− Ps(x)
...

Ps−1(x)− Ps(x)

(x−k − xk
pk
pj

)T

whose (a, b)th element is

εab = E

[
πjPj(x)

P 2(x)
(Pa(x)− Ps(x))

(
xb −

xk
pjk

pjb

)]
=
∑
x∈Ω

πjPj(x)

P (x)
(Pa(x)− Ps(x))

(
xb −

xk
pjk

pjb

)
. (B.11)

First suppose that j 6= a and j 6= s. Since |tbpjk − tkpjb| ≤ tbpjk + tkpjb ≤ 2m we have

|εab| ≤
2m

pjk

∑
x∈Ω

πjPj(x)

P (x)
|Pa(x)− Ps(x)|

≤ 2m

pjk

{∑
x∈Ω

πjPj(x)Pa(x)

P (x)
+
∑
x∈Ω

πjPj(x)Ps(x)

P (x)

}

≤ 2m

pjk

{
2

πa
e−

m
2 δ

2
ja +

2

πs
e−

m
2 δ

2
js

}
,

using Corollary B.3. Since δ2
ja > 0 and δ2

js > 0, we have εab →∞ as m→∞.
Now suppose j = a or j = s, and notice that∑

x∈Ω

(
xb −

xk
pjk

pjb

)
Pj(x) = E

(
Xb −Xk

pjb
pjk

∣∣∣∣ Z = j

)
= 0.

Therefore, the expression for εab in (B.11) is equivalent to

εab =
∑
x∈Ω

[
πjPj(x)

P (x)
(Pa(x)− Ps(x)) + 2Pj(x)

](
xb −

xk
pjk

pjb

)
=
∑
x∈Ω

πjPj(x)

[
Pa(x)− Ps(x)

P (x)
+ 2π−1

j

](
xb −

xk
pjk

pjb

)
,
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and so

εab ≤
2m

pjk

∑
x∈Ω

πjPj(x)

[
Pa(x)− Ps(x)

P (x)
+ 2π−1

j

]

=
2m

pjk

{∑
x∈Ω

πjPj(x)Pa(x)

P (x)
−
∑
x∈Ω

πjPj(x)Ps(x)

P (x)
+ 2π−1

j

}

≤ 2m

pjk

{
2

πa
e−

m
2 δ

2
ja − 2

πs
e−

m
2 δ

2
js + 2π−1

j

}
=

{
2m
pjk

2
πa

exp{−m2 δ
2
ja}, if j = s

2m
pjk

2
πs

exp{−m2 δ
2
js}, if j = a,

applying Corollary B.3 on the second-to-last line. Similarly,

εab ≥ −
2m

pjk

{
2

πa
e−

m
2 δ

2
ja − 2

πs
e−

m
2 δ

2
js + 2π−1

j

}
=

{
− 2m
pjk

2
πa

exp{−m2 δ
2
ja}, if j = s

− 2m
pjk

2
πs

exp{−m2 δ
2
js}, if j = a.

Therefore for both cases, j = a and j = s, we have that εab → 0 as m→∞.

Proof of Proposition 2.2. Here Z represents the population from which X was drawn. The complete data
likelihood is then

L(θ | x, z) =

s∏
`=1

[
π`f(x | p`,m)

]I(z=`)
.

This likelihood leads to the score vectors

∂

∂pa
logL(θ) = ∆a

[
D−1
a x−k −

xk
pak

1

]
,

∂

∂π
logL(θ) = D−1

π ∆−s −
∆s

πs
1,

where ∆ = (∆1, . . . ,∆s) so that ∆` = I(Z = `) and ∆ ∼ Mults(1,π), and ∆−s denotes the vector
(∆1, . . . ,∆s−1). Taking second derivatives yields

∂2

∂pa∂pTa
logL(θ) = −∆a

[
D−2
a x−k +

xk
p2
ak

11T
]
,

∂2

∂pa∂pTb
logL(θ) = 0, for a 6= b,

∂2

∂pa∂πT
logL(θ) = 0,

∂2

∂π∂πT
logL(θ) = −

[
D−2
π ∆−s +

∆s

π2
s

11T
]
.

Now take the expected value of the negative of each of these terms, jointly with respect to (X, Z), to obtain

the blocks of Ĩ(θ).

Proof of Corollary 2.4 (a). Since Ĩ(θ) is block diagonal, its inverse can be obtained by inverting the blocks.
To find the expressions for the individual blocks, we can apply the Sherman-Morrison formula (see for
example Rao (1965, chapter 1))

(C + uvT )−1 = C−1 − C
−1uvTC−1

1 + vTC−1u
.

24



For the case of F−1
π , for example, take C = D−1

π , u = π
−1/2
s 1, and v = π

−1/2
s 1T and use the expressions in

Corollary 2.3.

Proof of Corollary 2.4 (b). Since the trace of a block diagonal matrix is the sum of the traces of its blocks,
we have

tr
(
Ĩ(θ)

)
= π1 tr (F1) + · · ·+ πs tr (Fs) + tr (Fπ) . (B.12)

The individual traces can be obtained as

tr (F`) = tr
[
M(D−1

` + p−1
`k 11T )

]
=

k−1∑
j=1

M
{
p−1
`j + p−1

`k

}
,

a summation over the diagonal elements. Similarly for the block corresponding to π,

tr (Fπ) = tr
[
n
(
D−1
π + π−1

s 11T
)]

=

s−1∑
`=1

n
{
π−1
` + π−1

s

}
.

The result is obtained by replacing these expressions into (B.12).

Proof of Corollary 2.4 (c). Since Ĩ(θ) has a block diagonal structure,

det Ĩ(θ) = det {Fπ} ×
s∏
`=1

det {π`F`}

=

(
ns−1 det

{
D−1
π + π−1

s 11T
})( s∏

`=1

πk−1
` Mk−1 det

{
D−1
` + p−1

`k 11T
})

(B.13)

Recall the property (see for example Rao (1965, chapter 1)) that for M non-singular, we have

det(M + uuT ) =

∣∣∣∣ M −u
uT 1

∣∣∣∣ = det(M)
(
1 + uTM−1u

)
.

This yields, for instance

det
{
D−1
π + π−1

s 11T
}

= det
{
D−1
π

} (
1 + π−1

s 1TDπ1
)

=

[
1 +

1− πs
πs

] s−1∏
`=1

π−1
` = π−1

s

s−1∏
`=1

π−1
` .

The result can be obtained by substituting the simplified determinants into (B.13).

Proof of Theorem 2.5. This proof uses properties of matrix norms; refer to Lange (2010, Chapter 6) or Meyer
(2001, Chapter 5) for background. Notice that for non-singular q × q matrices A and B,

B−1 −A−1 = A−1(A−B)B−1.

Then for any matrix norm satisfying the sub-multiplicative property,

‖A−1 −B−1‖ ≤ ‖A−1‖ · ‖A−B‖ · ‖B−1‖. (B.14)

Fix θ ∈ Θ, take A = Ĩ(θ) and B = I(θ), and take ‖·‖ to be the Frobenius matrix norm. Then (B.14)
becomes

‖I−1(θ)− Ĩ−1(θ)‖F ≤ ‖I−1(θ)‖F · ‖Ĩ−1(θ)‖F · ‖I(θ)− Ĩ(θ)‖F ,
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where ‖A‖2F=
∑q
i=1

∑q
j=1 a

2
ij , and aij denote the elements of A. To show that the RHS converges to 0 as

m → ∞, we will handle the three terms separately. Since I(θ) − Ĩ(θ) → 0 as m → ∞ by Theorem 2.1,

‖I(θ) − Ĩ(θ)‖F → 0. Next, we address the ‖Ĩ−1(θ)‖F term. Using the explicit form in Corollary 2.4, we
have

0 ≤ ‖Ĩ−1(θ)‖2F =

s∑
`=1

‖π−1
` F−1

` ‖
2
F + ‖F−1

π ‖2F

=

s∑
`=1

m−2π−2
` ‖D` − p`pT` ‖2F + ‖Dπ − ππT ‖2F .

All terms beside m−2 are free of m, therefore ‖Ĩ−1(θ)‖F is seen to be decreasing in m, and hence is bounded
in m.

We will now consider the term ‖I−1(θ)‖, with the 2-norm in place of the Frobenius norm. Let λ1(m) ≥
· · · ≥ λq(m) be the eigenvalues of I(θ) for a fixed m, all assumed to be positive. Since the 2-norm of a
symmetric positive definite matrix is its largest eigenvalue, we have

0 ≤ ‖I−1(θ)‖2 =
1

λq(m)
=

1

min
‖x‖=1

xTI(θ)x

=
1

min
‖x‖=1

{
xT
[
I(θ)− Ĩ(θ)

]
x+ xT Ĩ(θ)x

} .
Notice that

min
‖x‖=1

xT
[
I(θ)− Ĩ(θ)

]
x+ min

‖x‖=1
xT Ĩ(θ)x ≤ min

‖x‖=1

{
xT
[
I(θ)− Ĩ(θ)

]
x+ xT Ĩ(θ)x

}
since both LHS and RHS are lower bounds for xT

[
I(θ)− Ĩ(θ)

]
x+ xT Ĩ(θ)x, and the RHS is the greatest

such bound. Therefore

1/λq(m) ≤ 1

min
‖x‖=1

xT
[
I(θ)− Ĩ(θ)

]
x+ min

‖x‖=1
xT Ĩ(θ)x

=
1

βq(m) + λ̃q(m),

denoting the eigenvalues of Ĩ(θ) as λ̃1(m) ≥ · · · ≥ λ̃q(m) (all positive), and the eigenvalues of I(θ) − Ĩ(θ)
as β1(m) ≥ · · · ≥ βq(m). It is well known that the mapping from a matrix to its eigenvalues is a continuous
function of its elements (Meyer, 2001, Chapter 7). Therefore

I(θ)− Ĩ(θ)→ 0 as m→∞ =⇒ βq(m)→ 0 as m→∞.

Now for any ε > 0, there exists a positive integer m0 such that |βq(m)| < ε for all m ≥ m0, and so we have

0 ≤ ‖I−1(θ)‖2 ≤
1

βq(m) + λ̃q(m)
≤ 1

λ̃q(m)− ε
(B.15)

for all m ≥ m0. Because ‖A‖2 ≤ ‖A‖F , and ‖Ĩ−1(θ)‖ was seen to be bounded, for all m there exists a
K > 0 such that,

1/λ̃q(m) = ‖Ĩ−1(θ)‖2 ≤ ‖Ĩ−1(θ)‖F ≤ K ⇐⇒ λ̃q(m) ≥ 1/K.
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WLOG assume that ε has been chosen so that λ̃q(m) ≥ 1/K > ε, to avoid division by zero. The RHS of
(B.15) is bounded above by (1/K−ε)−1 for all m ≥ m0, which implies ‖I−1(θ)‖2 is bounded when m ≥ m0.

To conclude the proof, note that in general q−1/2‖A‖F ≤ ‖A‖2, so that

0 ≤ ‖I−1(θ)− Ĩ−1(θ)‖F
≤ ‖I−1(θ)‖F · ‖Ĩ−1(θ)‖F · ‖I(θ)− Ĩ(θ)‖F
≤ √q‖I−1(θ)‖2 · ‖Ĩ−1(θ)‖F · ‖I(θ)− Ĩ(θ)‖F .

It follows from the earlier steps that the RHS converges to zero as m → ∞, and therefore ‖I−1(θ) −
Ĩ−1(θ)‖F → 0, which implies I−1(θ)− Ĩ−1(θ)→ 0.

Details for Example 3.1 In section 1, we have mentioned the random-clumped multinomial (RCM), a
distribution that addresses overdispersion due to “clumped” sampling in the multinomial framework. RCM
represents an interesting model for exploring computational methods. Recently, Zhou and Lange (2010) have
used it as an illustrative example for the minorization-maximization principle. Raim et al. (published online
2012) have explored parallel computing in maximum likelihood estimation using large RCM models as a test
problem. It turns out that RCM conforms to the finite mixture of multinomials representation (2.1), and
can therefore be fitted by the AFSA algorithm. Once the mixture representation is established, the score
vector and FIM approximation can be formulated by the use of transformations; see for example section 2.6
of Lehmann and Casella (1998). Hence, we can obtain the algorithm presented in Morel and Nagaraj (1993)
and Neerchal and Morel (1998) as an AFSA-type algorithm.

Consider a cluster of m trials, where each trial results in one of k possible outcomes with probabilities
π1, . . . , πk. Suppose a default category is also selected at random, so that each trial either results in this
default outcome with probability ρ, or an independent choice with probability 1 − ρ. Intuitively, if ρ → 0,
RCM approaches a standard multinomial distribution. Using this idea, an RCM random variable can be

obtained from the following procedure. Let Y0,Y1, . . . ,Ym
iid∼ Multk(π, 1) and U1, . . . ,Um

iid∼ Uniform(0, 1)
be independent samples, then

X = Y0

m∑
i=1

I(Ui ≤ ρ) +

m∑
i=1

YiI(Ui > ρ)

= Y0N + (Z | N) (B.16)

follows the distribution RCMk(π, ρ). The representation (B.16) emphasizes that N ∼ Binomial(m, ρ),
(Z | N) ∼ Multk(π,m−N), and Y0 ∼ Multk(π, 1), where N and Y0 are independent.

RCM is also a special case of the finite mixture of multinomials, so that

X ∼ f(x;π, ρ) =

k∑
`=1

π`f(x; p`,m),

p` = (1− ρ)π + ρe`, for ` = 1, . . . , k − 1,

pk = (1− ρ)π,

where f(x;p,m) is our usual notation for the density of Multk(p,m). This mixture representation can be
derived using moment generating functions, as shown in (Morel and Nagaraj, 1993). Notice that in this
mixture s = k, so that the number of mixture components matches the number of categories. There are also
only k distinct parameters rather than sk − 1 as in the general mixture.

The FIM approximation for the RCM model can be obtained by transformation, starting with the ex-
pression for the general mixture. Consider transforming the k dimensional η = (π, ρ) to the q = sk − 1 =
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(k + 1)(k − 1) dimensional θ = (p1, . . . ,ps,π) so that

θ(η) =


(1− ρ)π + ρe1

...
(1− ρ)π + ρek−1

(1− ρ)π
π

 , yielding
∂θ

∂η
=


(1− ρ)Ik−1 −π + e1

...
...

(1− ρ)Ik−1 −π + ek−1

(1− ρ)Ik−1 −π
Ik−1 0


as the q × k Jacobian of the transformation. Using the relations

S(η) =
∂

∂η
log f(x;θ) =

(
∂θ

∂η

)T
∂

∂θ
log f(x;θ),

I(η) = Var (S(η)) =

(
∂θ

∂η

)T
I(θ)

(
∂θ

∂η

)
,

it is possible to obtain an explicit form of the approximate FIM as stated in (Morel and Nagaraj, 1993). The

convergence Ĩ(η) − I(η) → 0 as m → ∞ is proved in detail in (Morel and Nagaraj, 1991). We then have
AFSA iterations for RCM,

η(g+1) = η(g) + Ĩ−1(η(g))S(η(g)), g = 1, 2, . . .

Proof of Proposition 3.3. The general form for AFSA is given by

θ(g+1) = θ(g) + Blockdiag
(
π1F

−1
1 . . . , πsF

−1
s ,F−1

π

)
S(θ(g))

so that the individual updates are

p
(g+1)
` = p

(g)
` + π−1

` F−1
`

∂

∂p`
logL(θ(g)), ` = 1, . . . , s

π(g+1) = π(g) + F−1
π

∂

∂π
logL(θ(g)).

From Corollary 2.4 we have

π(g+1) = π(g) + (nFπ)−1
n∑
i=1

∂ logL(θ(g) | xi)
∂π

= π(g) + n−1
[
Diag{π(g)} − π(g)π(g)T

] n∑
i=1

∂ log(θ(g) | xi)
∂π

.

Then for ` = 1, . . . , s− 1,

π
(g+1)
` = π

(g)
` + n−1π

(g)
`

n∑
i=1

P`(xi)− Ps(xi)

P(xi)
− n−1

n∑
i=1

s−1∑
t=1

π
(g)
` π

(g)
t

Pt(xi)− Ps(xi)

P(xi)

= π
(g)
` + n−1π

(g)
`

n∑
i=1

P`(xi)− Ps(xi)

P(xi)
− n−1π

(g)
`

n∑
i=1

{
P(xi)− π(g)

s Ps(xi)− (1− π(g)
s ) Ps(xi)

P(xi)

}

= π
(g)
` + n−1π

(g)
`

n∑
i=1

P`(xi)− Ps(xi)

P(xi)
− n−1π

(g)
`

n∑
i=1

{
1− Ps(xi)

P(xi)

}

= π
(g)
`

1

n

n∑
i=1

P`(xi)

P(xi)
.
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Next, to obtain explicit iterations for p`j ’s, the blocks for ` = 1, . . . , s are given by

p
(g+1)
` = p

(g)
` +

(
π

(g)
` F`

)−1 n∑
i=1

∂

∂p`
logL(θ(g) | xi)

= p
(g)
` +

1

Mπ
(g)
`

[
Diag{p(g)

` } − p
(g)
` p

(g)
`

T
] n∑
i=1

∂

∂p`
logL(θ(g) | xi).

For j = 1, . . . , k − 1,

p
(g+1)
`j = p

(g)
`j +

1

M

n∑
i=1

p
(g)
`j

P`(xi)

P(xi)

(
xij

p
(g)
`j

− xik

p
(g)
`k

)
− 1

M

n∑
i=1

k−1∑
t=1

p
(g)
`j p

(g)
`t

P`(xi)

P(xi)

(
xit

p
(g)
`t

− xik

p
(g)
`k

)

= p
(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)

(
xij −

p
(g)
`j

p
(g)
`k

xik

)
− 1

M

n∑
i=1

p
(g)
`j

P`(xi)

P(xi)

k−1∑
t=1

(
xit −

p
(g)
`t

p
(g)
`k

xik

)
.

= p
(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)

{(
xij −

p
(g)
`j

p
(g)
`k

xik

)
− p(g)

`j

k−1∑
t=1

(
xit −

p
(g)
`t

p
(g)
`k

xik

)}
(B.17)

Since
∑k
t=1 xit = mi and

∑k
t=1 p

(g)
`t = 1,

k−1∑
t=1

(
xit −

p
(g)
`t

p
(g)
`k

xik

)
= (mi − xik)− xik

1− p(g)
`k

p
(g)
`k

= mi − xik/p(g)
`k .

Applying this result to (B.17) and simplifying we get

p
(g+1)
`j = p

(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)

(
xij −mip

(g)
`j

)
= p

(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)
xij −

p
(g)
`j

M

n∑
i=1

mi
P`(xi)

P(xi)
.

Proof of Proposition 3.4. The complete data likelihood is

L(θ | x, z) =

n∏
i=1

s∏
`=1

[
π`f(xi | p`,mi)

]∆i`

.

where ∆i` = I(zi = `) and (∆i1, . . . ,∆is)
iid∼ Mults(1,π) for i = 1, . . . , n. Then the corresponding log-

likelihood is

logL(θ | x, z) =

n∑
i=1

s∑
`=1

∆i` log
[
π`f(xi | p`,mi)

]
. (B.18)

Since z1, . . . , zn are not observed, we instead use the expected log-likelihood, conditional on θ = θ(g) and x.
First note that

γ
(g)
i` := E

(
∆i` | x1, . . . ,xn,θ

(g)
)

= P(Zi = ` | xi,θ(g))

=
P(Zi = ` | θ(g)) P(xi | Zi = `,θ(g))

f(xi | θ(g),mi)
=

π
(g)
` f(xi | p(g)

` ,mi)∑s
a=1 π

(g)
a f(xi | p(g)

a ,mi)
=
π

(g)
` P`(xi)

P(xi)
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is the posterior probability of population `, given xi and the previous iteration. Conditional on this infor-
mation, the expectation of (B.18) becomes

Q(θ,θ(g)) :=

n∑
i=1

s∑
`=1

γ
(g)
i` log π` +

n∑
i=1

s∑
`=1

γ
(g)
i` log

[
f(xi | p`,mi)

]
.

Now to maximize this expression with respect to each parameter, equate partial derivatives to zero and solve
for the parameter. For π1, . . . , πs−1 we have

0 =
∂

∂πa
Q(θ,θ(g)) =

n∑
i=1

γ
(g)
ia

πa
−

n∑
i=1

γ
(g)
is

πs

⇐⇒ πs

n∑
i=1

γ
(g)
ia = πa

n∑
i=1

γ
(g)
is . (B.19)

Summing both sides of (B.19) over a = 1, . . . , s we obtain

πs

s∑
a=1

n∑
i=1

γ
(g)
ia =

n∑
i=1

γ
(g)
is ⇐⇒ πsn =

n∑
i=1

γ
(g)
is

⇐⇒ π̂(g+1)
s =

1

n

n∑
i=1

γ
(g)
is

since the posterior probabilities γ
(g)
i1 , . . . , γ

(g)
is sum to 1. Replacing this back into (B.19) yields

π̂(g+1)
a =

π̂
(g+1)
s

∑n
i=1 γ

(g)
ia∑n

i=1 γ
(g)
is

=
1

n

n∑
i=1

γ
(g)
ia .

Similar steps yield the EM iterations for the pab’s. For pab where a = 1, . . . , s and b = 1, . . . , k − 1,

0 =
∂

∂pab
Q(θ,θ(g)) =

n∑
i=1

γ
(g)
ia

(
xib
pab
− xik
pak

)

⇐⇒ pak

n∑
i=1

γ
(g)
ia xib = pab

n∑
i=1

γ
(g)
ia xik. (B.20)

Summing both sides of (B.20) over b = 1, . . . , k we obtain

pak

n∑
i=1

γ
(g)
ia mi =

n∑
i=1

γ
(g)
ia xik ⇐⇒ p̂

(g+1)
ak =

∑n
i=1 xikγ

(g)
ia∑n

i=1miγ
(g)
ia

since xi1 + · · ·+ xik = mi. Replacing this back into (B.20) yields

p̂
(g+1)
ab = p̂

(g+1)
ak

∑n
i=1 xibγ

(g)
ia∑n

i=1 xikγ
(g)
ia

=

∑n
i=1 xibγ

(g)
ia∑n

i=1miγ
(g)
ia

.
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