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Abstract
The U.S. Census Bureau maintains the Master Address File (MAF) as a basis for the decennial

census and household surveys it conducts throughout the decade. To prepare for the 2010 Census,
the Census Bureau organized a full-scale address canvassing operation where field representatives
walked most of the United States to find and correct errors on the MAF. The Census Bureau is now
developing strategies to avoid the high cost of a full in-field canvassing for the 2020 Census and
to reduce errors throughout the decade. One idea has been to use statistical models to study and
predict coverage errors found on the MAF. Such models could potentially help to inform address
listing fieldwork and other less costly alternatives being considered by the Census Bureau. Previous
MAF modeling work has simply ordered point estimates to suggest regions which might contain
significant coverage error and require further attention. In this work, we consider the problem in a
decision theoretic framework. By choosing an appropriate loss function, we can study consequences
of canvassing decisions under a selected model with data from past operations.
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1. Introduction

The Master Address File (MAF) is a database maintained by the Census Bureau to record
addresses of all known housing units in the United States. The MAF is used to prepare
address lists for the decennial census and household surveys such as the American Com-
munity Survey (ACS). Because the MAF is critical to the mission of the Census Bureau, it
is maintained through several mechanisms. The primary source of new addresses is the De-
livery Sequence File (DSF) which is received from the United States Postal Service twice
per year. Addresses are also contributed through Census Bureau listing programs such as
Local Update of Census Addresses, Demographic Area Address Listing, and Community
Address Updating System (U.S. Census Bureau, 2014).

To prepare for the 2010 Decennial Census, the Census Bureau carried out a large scale
field operation known as the 2010 Address Canvassing operation (AdCan). This opera-
tion involved approximately 111,000 field representatives (FRs) walking 6 million census
blocks in the U.S. and Puerto Rico and comparing an address list extracted from the MAF
with addresses encountered on the ground (U.S. Census Bureau, 2012). A valid housing
unit which was discovered on the ground but missing from the MAF was deemed an under-
coverage error, and the address was added to the MAF to correct the error. This corrective
action was recorded primarily in one of two ways, determined at the end of AdCan. If the
address already existed on the MAF but failed to be included on the address list for FRs,
it was recorded as a matched add. In many cases, the MAF entry was incomplete (e.g.,
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some location information was missing) and only became usable after it was rediscovered
in the field. On the other hand, if the added housing unit was new to the MAF, a new add
outcome was recorded in the operation. An address from the MAF that was found not to
be a habitable housing unit was deemed an overcoverage error and the address was marked
for deletion from the MAF and a delete outcome was recorded in the operation.1

The extensive 2010 Address Canvassing operation prepared the MAF for the decennial
census and provided a wealth of data on coverage errors. However, the cost of nearly half
a billion dollars made it the second most expensive operation in the 2010 Census, after
non-response followup operations (Boies et al., 2012). Furthermore, a large proportion
of blocks were seen to be stable, with little or no coverage error. After 2010, the Census
Bureau began research on initiatives to avoid a large in-field canvassing operation before the
2020 Census. If stable blocks could be identified and set aside, canvassing costs could be
substantially reduced without allowing a significant increase in coverage errors. One major
effort has been to build statistical models from the AdCan outcomes and predict coverage
error for census blocks (or other levels of geography) using covariates available before the
operation. One of the first statistical modeling efforts was to use logistic regression (Boies
et al., 2012). Young et al. (2016) took a count regression approach using the zero-inflated
negative binomial model. Raim and Gargano (2015) also considered zero-inflated negative
binomial regression, but with a more exhaustive variable selection and more candidate
predictors. Heim and Raim (2016) considered several models for count regression with
spatial dependence among the random effects. Current operational plans by the Census
Bureau do not directly involve models, but instead focus on in-office canvassing activities
such as reviewing satellite images to detect changes in housing units (U.S. Census Bureau,
2015a,b). Although models are not planned for use in 2020 Census operations, they are
still of general interest from a research perpective and could be considered for use beyond
the 2020 Census.

This paper will take a closer look at one particular aspect of the statistical modeling
approach: how to make decisions based on an estimated model. In previous work such as
Boies et al. (2012), Raim and Gargano (2015), Young et al. (2016), and Heim and Raim
(2016), models were evaluated by a method similar to the following. Suppose there are
n census blocks, and we are allowed to canvass a limited number k < n. Let y1, . . . , yn
denote the observed counts of new adds from AdCan, and let ŷ1, . . . , ŷn denote predictions
from a given model. LetZk ⊂ {1, . . . , n} be the set of k blocks with the largest predictions
ŷi. We can then consider quantities such as the count

∑
i∈Zk

yi which would have been
captured through a limited canvassing guided by the model. One fundamental shortcoming
of this method is that it does not use all three components of the multivariate outcome (new
adds, matched adds, and deletes). Another shortcoming is that it does not weigh the cost
of reduced effort (when a block is excluded from Zk) against the cost of missed coverage
errors. Deciding not to canvass a particular block results in an immediate cost savings from
the canvassing operation; however, resulting coverage error could result in reduced quality
of the decennial census.

In this paper, we recall the classical framework for statistical decision theory (Berger,
1993; DeGroot, 2004) and consider how it can be used to make decisions based on MAF
models. We propose a simple measure of MAF error based on a multivariate outcome
where the decision maker specifies cutpoints to define categories of coverage error severity.
This facilitates specifying the loss function as a two-way table. From here, risks can be
computed and a decision can be identified which minimizes risk; in this sense, we determine
an optimal decision. We consider two variants of the block selection problem. In the first

1In practice, records are not actually deleted from the MAF, but are flagged so that they can be distinguished
from habitable housing units.



Table 1: Example loss function for umbrella decision problem.

Rain Today?
No (ω0) Yes (ω1)

Bring Umbrella? No (a0) 0 100
Yes (a1) 50 20

variant, we may decide, for each block individually, whether or not to trigger an alert of a
coverage error problem. In the second variant, we are given an allowance k < n of blocks
that we can select out of n. We find, perhaps an unsurprising conclusion, that even when the
state of nature (represented by the model parameter) is fully known, the “optimal” decision
can vary greatly based on the decision maker. We note that costs are expressed through
loss or utility and not actual monetary costs. Recently, Thibaudeau and Morris (2016) have
also explored the use of statistical decision theory in census operations, specifically for
non-response followup.

The rest of the paper proceeds as follows. In Section 2, we recall the classical decision
theory framework where a finite number of outcomes are possible. Section 3 formulates
MAF coverage as a categorical state. Section 4 considers the block selection problem where
decisions are at the individual block level, while Section 5 considers the variant where a
subset of k is to be selected. Finally, Section 6 concludes the paper.

2. Decisions with Finite Outcomes

Consider a simple scenario where there are J possible states of nature Ω = {ω1, . . . , ωJ}
and M possible actions A = {a1, . . . , aM}. The true state of nature ω ∈ Ω is not known,
but information on its prior distribution P(ω = ωj) for j = 1, . . . , J is assumed. The
decision maker must select an action δ ∈ Awhich leads to the best possible outcome 〈ω, δ〉.
The consequence of taking action δ under state ω is quantified by a loss function L(ω, δ),
which must be specified by the decision maker. We will make the common assumption that
L(ω, δ) ≥ 0 so that L(ω, δ) = 0 indicates a best possible outcome.

For example, consider the problem of deciding to bring an umbrella to work today.
Suppose there are only two possible states: no rain today (ω0) or rain today (ω1). The two
possible actions are to either leave the umbrella at home (a0) or bring the umbrella (a1).
The loss function is subjective and depends on the decision maker, but here is one possible
development:

• The best outcome is 〈ω0, a0〉, with nicer weather and where we are not encumbered
by the umbrella.
• The worst outcome is 〈ω1, a0〉, where we are caught in the rain without the umbrella.
• The outcome 〈ω1, a1〉 is more desirable than 〈ω0, a1〉. For the latter, we may be likely

to lose the umbrella because it was not needed. In the former outcome, at least we
have the satisfaction that we made a good decision.

By carefully comparing the outcomes, we have determined an ordering 〈ω1, a0〉 < 〈ω1, a1〉 <
〈ω0, a1〉 < 〈ω0, a0〉, where the notation O1 < O2 is taken to mean that outcome O1 is less
desirable than outcome O2. Next, numerical values can be assigned to the loss function;
one possibility is given in Table 1.

In a Bayesian setting, the prior density p(ω) captures our uncertainty about the state ω
before any data are collected. In the absense of any data, an optimal decision can be made



by selecting an action δ ∈ A to minimize the expected loss under the prior distribution,

E[L(ω, δ)] =
J∑

j=1

L(ωj , δ)p(ωj).

For the rain example, suppose p(ω0) = 0.5 and p(ω1) = 0.5. Then E[L(ω, a0)] = 50 and
E[L(ω, a1)] = 35 so that the optimal decision is to bring the umbrella.

Evidence on ω can be collected through observed data D; by specifying a likelihood
p(D | ω) which relates the probability of D to ω, we can use Bayes rule to obtain the
posterior density p(ω | D). In a Bayesian analysis, we desire to make an optimal decision
conditional on D. This can be accomplished by selecting an action δ ∈ A to minimize the
expected loss under the posterior distribution

E[L(ω, δ) | D] =
J∑

j=1

L(ωj , δ)p(ωj | D). (1)

The quantity (1) is the posterior risk, which we will notate by r(p, δ). This notation em-
phasizes that the risk depends on the density p of ω (which may be, for example, the prior
p(·) or the posterior p(· | D)) and the selected action δ. To illustrate a possible source of
data in the umbrella problem, we could have D consisting of a single random variable

X =

{
1 if local weather station predicts rain,
0 otherwise,

where X ∼ Bernoulli(ω1) if it will rain and X ∼ Bernoulli(ω0) otherwise.

3. Categories for Coverage Error

The decision framework from Section 2 applies to outcome spaces where both the space
Ω for the state of nature and the action space A are discrete. MAF error models have
involved Bernoulli, Negative Binomial, and related regression models (Boies et al., 2012;
Raim and Gargano, 2015; Young et al., 2016; Heim and Raim, 2016). In such models, the
unknown state of nature θ is represented by parameters of a likelihood. It may be difficult
for a decision maker to select an action δ ∈ A based directly on inference of θ, which
may include regression coefficients, variances, dispersion parameters, etc. Instead, we will
create categories of severity for MAF coverage error as functions of θ, which will facilitate
decision making.

We will focus on models with count outcomes, as discussed in Raim and Gargano
(2015), Young et al. (2016), and Heim and Raim (2016). Let NewAddsi, MatchedAddsi,
and Deletesi denote (scalar) counts of new adds, matched adds, and deletes, respectively,
for blocks i = 1, . . . , n; these quantities are considered to be random variables. Also let
xi, i = 1, . . . , n, denote a vector of covariates for regression. For example, xi may contain
the area of the ith block, whether the block is urban or rural, and the count of housing
units on the block before the new adds, matched adds, and deletes were obtained. We will
denote the latter quantity as HUi. The xi are considered fixed (not random), and the goal
of modeling will be to make decisions conditional on knowing these characteristics. We
will denote

D = {(NewAddsi,MatchedAddsi,Deletesi,xi) : i = 1, . . . , n}



as all data available to train the model. We will drop the index i and use expressions such
as NewAdds, MatchedAdds, and Deletes when referring to a typical block with predictor
x.

We would like an ordinal variable to summarize the overall coverage error for a block
based on the multivariate outcome (NewAddsi, MatchedAddsi, Deletesi). One way to do
this is to consider random variables

Y ∗i =
NewAddsi + MatchedAddsi + Deletesi

HUi + 1
, i = 1, . . . , n

as measures of coverage error on the blocks of interest. Higher counts of new adds, matched
adds, or deletes contribute to an increased coverage error, while more previously exist-
ing housing units lowers the perceived severity.2 For example, consider two blocks with
NewAdds+MatchedAdds+Deletes = 10; a block with HU = 1 would be a more alarming
case of coverage error than another block with HU = 1000.

The decision maker can now define cutpoints γ1 < · · · < γJ−1 to create meaningful
categories for the range of Y ∗,

[γ0 < Y ∗ ≤ γ1], . . . , [γJ−1 < Y ∗ < γJ ],

where γ0 = −∞ and γJ = ∞ are fixed. The event that Y ∗ falls into each of these
categories is a (multinomial) random variable, but the associated probabilities

πj(x,θ) = Pθ(γj−1 < Y ∗ ≤ γj | x)

are fixed quantities given the unknown θ. To simplify the notation, we will write πj =
πj(x,θ) and π = (π1, . . . , πJ) when the context is clear. Whether π is a tractable function
of x and θ depends on the the distribution of Y ∗; if not tractable, π can be computed by
Monte Carlo approximation.

In the following sections, we will consider problems whose loss functions are linear
combinations of π, so that the posterior risk is a linear combination of E[π(x,θ) | D].
Here, expectation is taken with respect to the density p(θ | D) = p(D | θ)p(θ)/p(D), with
likelihood p(D | θ) and prior p(θ) specified by the model.

4. A Two Decision Problem for Individual Blocks

The Census Bureau is planning to use aerial imagery and other in-office alternatives to a full
scale canvassing operation (U.S. Census Bureau, 2015b). Statistical models could augment
the planned operations by triggering high-risk census blocks for closer review. A model
with sufficiently good predictors might detect coverage error which is not visible through
imagery. In practice, finding effective predictors for coverage error is an ongoing problem
(Raim and Gargano, 2015). Here we will simply assume knowledge of an effective x.

Suppose that there are n blocks in the country. Focusing on the ith block, we would
like to determine whether there is evidence of serious enough coverage error to trigger an
alert. Here, our decision can be one of two choices and is local to one particular block at a
time. To be concrete, let us consider J = 5 categories of coverage error,

{None,Lo,Med,Hi,Severe},
2We let the three types of coverage error contribute to the coverage error equally. We could also consider

setting coefficients to weight new adds, matched adds, and deletes differently, and to modify the effect of HUi

in the denominator. Note that HUi +1 is used in the denominator because blocks may have zero housing units
before canvassing.



Table 2: An example ranking of the outcomes in the two-decision problem for individual
blocks.

None Lo Med Hi Severe
a0 9 6 3 2 1
a1 4 5 7 8 9

with cutpoints γ1 = 1, γ2 = 4, γ3 = 10, γ4 = 20. For a given census block, the two
possible actions inA are: (a1) to trigger an alert on the block or (a0) to not trigger. We will
consider a linear loss function for the ith block,

Li(θ, δ) =

{
cT0 π(xi,θ), if δ = a0,

cT1 π(xi,θ), if δ = a1.

The decision maker determines the nonnegative costs c0 = (c01, . . . , c0J) and c1 = (c11, . . . , c1J)
to formulate the loss function.3 Interpretation of this loss function is similar to the discrete
loss function from Section 2; for example, if π = (1, 0, . . . , 0) then c01 represents the
consequence of action a0 when the category is None with probability 1. For a general π,
Li(θ, δ) represents a weighted mean of costs c0 or c1.

Selection of c0 and c1 is critical for the loss function to reflect the sense of the decision
maker. Meaningful values for these costs can be solicited in an intuitive way by taking the
following steps:

1. Rank the 2J outcomes 〈ωj , a`〉 from least to most desirable. Ties are acceptable.
2. Solicit loss values for ordered outcomes using the algorithm from Berger (1993,

Ch. 2).
3. Let ckj be the loss associated with outcome 〈ωj , a`〉.

In sorting the outcomes, we first note that c01 ≤ · · · ≤ c0J and c11 ≥ · · · ≥ c1J will be
true for a rational decision maker. For example, if our action is to not trigger (a0), it is safe
to assume that the best outcome for coverage severity is None, the second best outcome is
Lo, and so on.

The algorithm from Berger (1993, Chapter 2) gives a principled way to solicit numerical
values for the sorted outcomes; it is also described in DeGroot (2004). We will think for
a moment in terms of utility rather than loss. The concepts are equivalent, with utility
proportional to the negative of the loss. We will illustrate the algorithm intuitively in terms
of the current problem; see Berger (1993) for a more formal description. Suppose we have
ranked the outcomes according to Table 2.

We first assign utility 0 to the worst outcome(s) and utility 1 to the best outcome(s),

Ui(Severe, a0) = 0

Ui(None, a0) = 1

Ui(Severe, a1) = 1

Now identify outcome(s) whose rank is halfway between worst and best; this is 〈Lo, a1〉
in our example, which has rank 5. The decision maker compares two experiments: (1)
having 〈Lo, a1〉 occur with certainty, and (2) taking the result of a gamble between a worst
outcome and a best outcome, say

P(〈Severe, a0〉) = 1− α, P(〈None, a0〉) = α.

3The decision itself is only to select δ ∈ A; c0 and c1 remain fixed.



The decision maker must select an α to make the gamble exactly as appealing as having
〈Lo, a1〉 occur with certainty. Doing so yields

Ui(Lo, a1) = (1− α)Ui(Severe, a0) + αUi(None, a0)

= (1− α) · 0 + α · 1
= α.

To help guide the selection of α, we can think of choosing α closer to 1 if the appeal of
〈Lo, a1〉 is closer to the appeal of the best outcome, or choosing it closer to 0 if the appeal is
closer to the appeal of the worst outcome. Here, 〈Lo, a1〉 represents triggering an alert that
might be considered unnecessary, but does not seem close to the severity of 〈Severe, a0〉;
therefore, α > 1/2 seems justified.

We now have utility values for outcomes with ranks 1, 5, and 9. We next solicit utilities
for ranks 3 and 7. The outcome with rank 3 is 〈Med, a0〉; we obtain its utility by com-
paring the two experiments: (1) it occuring with certainty, and (2) taking the result of a
gamble between the rank 1 outcome (with probability 1−α) and the rank 5 outcome (with
probability α). Again, α must be selected to make the two experiments equally appealing.
Similarly, the rank 7 outcome is assigned utility by comparing to the rank 5 and rank 9
outcomes. The remaining outcomes can be assigned utility in a similar way, comparing
to surrounding outcomes whose utility value has already been determined. Berger (1993)
recommends a formal consistency check of the the completed utility function to ensure the
decision maker has thought through all comparisons. The assigned utility values are in the
interval [0, 1] and the loss function is obtained by Li(ωj , a`) = 1 − Ui(ωj , a`), for each
k = 1, . . . ,M and j = 1, . . . , J .

After formulating the loss function and observing data D, the posterior risk for the ith
block is

ri(p, δ) =

{
cT0 E[π(xi,θ) | D], if δ = a0

cT1 E[π(xi,θ) | D], if δ = a1.

where E[· | D] represents the expectation with respect to the posterior distribution p(θ | D).
The optimal decision is a0 if (c0 − c1)T E[π | D] ≤ 0, and a1 otherwise.

The following simulation illustrates the degree that the optimal solution can change
with respect to changes in the loss function. Assume the model

NewAddsi
ind∼ Poisson

(
exp(βA0 + βA1 wi + βA2 log(HUi + 1) + eAi )

)
,

MatchedAddsi
ind∼ Poisson

(
exp(βM0 + βM1 wi + βM2 log(HUi + 1) + eMi )

)
,

Deletesi
ind∼ Binomial

(
HUi, logit−1(βD0 + βD1 wi + eDi )

)
,

eAi
iid∼ N(0, τ2A), eRi

iid∼ N(0, τ2M ), eDi
iid∼ N(0, τ2D),

for i = 1, . . . , n = 1000. This scenario is a simplified version of regression models used
in past MAF error modeling work. The predictors xi = (wi,HUi), i = 1, . . . , n, are
generated according to

wi
iid∼ Uniform(0, 8),

HUi
iid∼ NegBin(µ, κ).

To simplify matters, we take θ = (βA,βM ,βD, τ2A, τ
2
M , τ

2
D) to be known, with

βA = (0.5, 0.25, 0.1), βR = (0.5, 0.25, 0.1), βM = (0, 0.5),

τA = τM = τD = 0.1, µ = 5, κ = 0.25,



Table 3: Utility functions for three decision makers. The utility value for each outcome is
shown, with its rank in parentheses.

(a) “Conservative” None Lo Med Hi Severe
a0 1 (9) 3/8 (4) 2/8 (3) 1/8 (2) 0 (1)
a1 4/8 (5) 5/8 (6) 6/8 (7) 7/8 (8) 1 (9)

(b) “Moderate” None Lo Med Hi Severe
a0 1 (9) 5/8 (6) 2/8 (3) 1/8 (2) 0 (1)
a1 3/8 (4) 4/8 (5) 6/8 (7) 7/8 (8) 1 (9)

(c) “Liberal” None Lo Med Hi Severe
a0 1 (9) 6/8 (7) 5/8 (6) 1/8 (2) 0 (1)
a1 2/8 (3) 3/8 (4) 4/8 (5) 7/8 (8) 1 (9)

so that the observed data NewAddsi, MatchedAddsi, and Deletesi are not needed for deci-
sion making.4 5

Table 3 formulates utility functions for three fictional decision makers. The table entry
for each outcome contains its utility value along with its rank (from least to most desirable)
among all outcomes for the decision maker. All three decision makers consider 〈None, a0〉
and 〈Severe, a1〉 to be the best outcomes, both equally good because the correct decision
was made. Similarly, all consider 〈Severe, a0〉 to be the worst outcome. Of the remaining
outcomes, the “conservative” decision maker favors a1 if the severity is anything except
None, and therefore detection of any coverage error is considered to be important. The
“moderate” decision maker has a slightly different prioritization, treating 〈Lo, a0〉 as a more
desirable outcome. The “liberal” decision maker takes this one step further, also treating
〈Med, a0〉 as a more desirable outcome.

Figure 1 shows a histogram of expected categories
∑J

j=1 j ·πj(xi,θ), for i = 1, . . . , n,
of the simulated blocks. This gives an objective summary of the blocks which does not de-
pend on a particular loss function. We would likely decide a1 for the blocks with expected
category near 5, and a0 for the blocks with expected category close to 1, but the reader
must decide where he or she places the threshold to trigger a block. Figure 2 compares the
optimal decisions by our three decision makers. The empirical density of the quantities

di = Li(θ, a0)− Li(θ, a1) = (c0 − c1)Tπ(xi,θ), for i = 1, . . . , n (2)

is shown for each utility function. Recall that (2) is the quantity used in the optimal decision
rule when no data D is observed. The di which fall to the left of the “decision boundary”,
where the horizontal axis is 0, should not be triggered according to this rule. In all, 927
blocks are triggered under the conservative loss, 609 are triggered under the moderate loss,
and 322 are triggered under the liberal loss. This result emphasizes the large degree that an
optimal result can vary based on the beliefs of the decision maker.

5. A Block Selection Problem

Consider the problem of block selection before the decennial census. Suppose it is deter-
mined that we may canvass at most k of the n blocks using representatives in the field. This
is a greatly simplified version of the problem because blocks can vary in size and effort to
canvass. Also, the cost of canvassing depends on the spatial configuration of the selected

4This is an example of a “no-data” decision problem.
5Taking θ to be known is equivalent to taking the prior p(θ) as a point mass at the true data-generating θ.
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blocks; for example, a selection spaced uniformly across the country will be more costly
than a selection with relatively fewer clusters of nearby blocks.

Let K be the loss for exceeding the allowance; we will assume that it is very large so
that a reasonable solution will never exceed k blocks. Denote δ = (δ1, . . . , δn) as our
vector of decisions, with

δi =

{
a1 if ith block is selected,
a0 otherwise

Consider the loss

L(θ, δ) =
n∑

i=1

Li(θ, δi) +K · I

{
n∑

i=1

I(δi = a1) > k

}
,

where
∑n

i=1 Li(θ, δi) represents the loss due to decision making andK·I {
∑n

i=1 I(δi = a1) > k}
represents the loss due to exceeding the allowance. The assumption of the decision loss be-
ing additive is rather strong—the loss due to many poor decisions might actually be larger
than the sum of the individual losses—but ensures that the problem is tractable. The poste-
rior risk given observed data D becomes

r(p, δ) =

n∑
i=1

ri(p, δi) +K · I

{
n∑

i=1

I(δi = a1) > k

}
.

This expectation is easily computed because the decision loss is additive, while the al-
lowance loss does not depend on θ. Denoting di = ri(p, a0)− ri(p, a1) as the reduction in
risk obtained by selecting the ith block, and zi = I(δi = a1) we may write

r(p, δ) =
n∑

i=1

ri(p, a0)−
n∑

i=1

dizi subject to
n∑

i=1

zi ≤ k. (3)

From (3), it can be seen that minimizing r(p, δ) is equivalent to maximizing
∑n

i=1 dizi
subject to the constraint. The following greedy algorithm determines an optimal selection:

1. Let Zk be the indices corresponding to the k largest di.
2. Make decision a1 for i ∈ Zk, and a0 for the remaining i /∈ Zk.

There are many possible extensions to this problem, but care must be taken to avoid
intractibility. For example, consider the weighted loss functions

L∗(θ, δ) =

n∑
i=1

wiLi(θ, δi) +K · I

{
n∑

i=1

I(δi = a1) > k

}
and

L∗∗(θ, δ) =
n∑

i=1

Li(θ, δi) +K · I

{
n∑

i=1

wiI(δi = a1) > k

}
,

where weights w1, . . . , wn are known to the decision maker. Loss L∗ leads to a similar
greedy algorithm as L. However, minimizing risk based on loss L∗∗ is similar to the 0-1
knapsack problem in the computer science literature. A greedy strategy does not solve the
0-1 knapsack problem optimally, but a more clever approach such as dynamic programming
is needed (Cormen et al., 2009, Chapter 16).



6. Conclusions

Statistical decision theory provides a formal way to make informed decisions using data. In
this paper, we have considered two problems related to address canvassing and MAF main-
tenance at the Census Bureau. These were toy problems which ignored many complexities,
but perhaps are a step toward thinking about real operational problems. There are several
steps in formulating the loss function which could be subject to scrutiny: our quantity to
measure coverage error, the need to specify cutpoints to determine categories of severity,
and the specification of the loss function itself. We have attempted to make the process
intuitive, but much responsibility is placed upon the decision maker.

Many interesting extensions to this work are possible. In the block selection problem,
spatially remote blocks are more expensive to include; however, this was not factored into
our simple version of the problem. Traditionally, in the statistical literature, the loss func-
tion is used to derive an optimal procedure rather than to make an actual decision. It may
therefore be of interest to incorporate both the statistical procedure and the decision into a
single loss function. Finally, we note in Section 4 that the optimal rule is based on a linear
function of E(π | D), which is a single summary of the posterior distribution. The pos-
terior could be used further to assess variability associated with the decision; for example,
credible intervals for (c0 − c1)Tπ(xi,θ) could be compared to the decision boundary at
zero.
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