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Abstract
Logistic regression often cannot account for large variability seen in binomial data due to

departures from standard assumptions. Many techniques have been considered to address
this issue, commonly known as overdispersion. Finite mixture distributions may be used
when the extra variation is explained by the presence of several latent subpopulations.
For example, a finite mixture of regressions links the probability for each latent group to
a seperate regression. Analogously to the usual logistic regression, we consider linking a
regression to the mixture probability of success in a finite mixture of binomials. This can be
seen as “marginal modeling” with respect to the latent groups, as opposed to the mixture
of regressions which is seen as “conditional modeling” on the groups, and would allow
more parsimonious models when only a single overall regression is desired. Our approach
is likelihood-based, which may be considered an advantage over quasi-likelihood techniques
often used to address overdispersion. This work presents the new model and an illustrative
example.

Key Words: Overdispersion; GLM; Logistic Regression; Random Effects; Goodness-
of-Fit.

1. Introduction

A common problem in the analysis of binomial data using standard logistic regres-
sion is that more variation is present in the data than can be expressed by the
model; in this case, overdispersion is said to occur. This work considers a novel way
of handling overdispersion in the binomial regression setting; that is, by linking a
regression to the probability of success in a finite mixture of binomials. In the finite
mixture, the overall probability of success π1p1 + · · · + πJpJ is a weighted sum of
the probabilities pj , for 1, . . . , J , from J latent subpopulations. Consequently, there
are technical challenges must be overcome in expressing the model and carrying
out even basic computations. This paper develops one possible implementation of
the model. Although still in its early stages of development, we show that it pro-
vides a good fit for a real dataset with known overdispersion issues, faring well in
comparison to several other binomial models with extra variation.

The rest of the paper proceeds as follows. Section 2 introduces the binomial re-
gression problem and discusses some existing approaches to handling extra variation.
Section 3 develops the new model, which is termed the Mixture Link distribution,
and section 4 presents plots of its density. An illustrative example for the effect of
radiation dose on chromosome aberrations is presented in section 5; several binomial
models are compared using a goodness-of-fit test as well as AIC and BIC. Finally,
section 6 concludes the paper.
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2. Background

Under the usual logistic regression model, Ti successes are observed in mi trials for
i = 1, . . . , n. The probability of success pi for each observation is modeled on a
covariate xi ∈ Rd, which is taken to be fixed. It is assumed that pi = G(xTi β) for
β ∈ Rd and a prespecified inverse link function G : R → (0, 1). For this paper, G
will be taken to be the cumulative distribution function for the logistic distribution
G(x) = 1/(1 + e−x). The model just described may be written briefly as

Ti
ind∼ Bin(mi, pi), pi = G(xTi β).

In practice, Ti, xi, and mi are observed, and statistical inference on the parameter
β is a primary objective of analysis. Logistic regression is a special case of the
generalized linear model (GLM) framework McCullagh and Nelder (1989), which
allows non-normal, non-continuous outcomes to be modeled as responses to a re-
gression. Although GLM accomplishes this naturally, a frequent problem is that
the data exhibit more variation than the framework is capable of expressing (Morel
and Neerchal, 2012). When this happens, we say that there is overdispersion with
respect to the chosen model. Overdispersion may be caused, for example, when
important covariates have not been included in the regression, or when the implicit
assumption of independence within the mi trials has been violated. The limitation
in the amount of modeled variability can be seen by noting the relationship between
the mean and variance

E(Ti) = mipi and Var(Ti) = mipi(1− pi);

therefore, the same regression used to model the probabilities of success of the Ti
also must explain their mean and variance.

A simple workaround is to extend the model with a dispersion parameter φ so
that Var(Ti) = φmipi(1 − pi) (Agresti, 2002, Section 4.7). The resulting model is
referred to as quasi-likelihood because it no longer correponds to a true distribu-
tion. For longitudinal data, a popular quasi-likelihood method is the generalized
estimating equations (GEE) developed by Liang and Zeger (1986). GEE proposes
that inference on β to be based on a score-like equation, and allows the analyst to
assume a working correlation structure as a way to induce dependence for observa-
tions within a subject. This idea may be used when individual Bernoulli trials of
a binomial experiment are observed. GEE has some desirable properties, such as
consistency even under misspecification of the working correlation. However, being
a quasi-likelihood method, it may not be based on a real likelihood.

There are also a variety of likelihood-based models that can be used to induce
extra variation; we will mention several here. The zero-inflated binomial (ZIB)
distribution discussed by Hall (2000),

P(T = t | m, p, φ) = φI(t = 0) + (1− φ)Bin(t | m, p),

assumes a latent process that generates a zero with probability φ and a binomial ran-
dom variable with probability 1−φ. Similarly, any of the support values 0, 1, . . . ,m
may be selected by the analyst to be inflated. The random-clumped binomial (RCB)
distribution (Morel and Nagaraj, 1993) may be used when the inflated value is not
known ahead of time and is considered to be drawn randomly. An RCB distributed
random variable T = NY + (X | N) is obtained using

Y ∼ Ber(p), N ∼ Bin(m,φ), (X | N) ∼ Bin(m−N, p),



where Y represents success/failure of a leader, N is the number of trials that follows
the leader, and (X | N) are remaining trials that are selected independently. Here,
p ∈ (0, 1) is interpreted as the success probability for the trials, and φ ∈ (0, 1) is the
probability of following the leader. Perhaps the most popular binomial distribution
supporting extra variation is beta-binomial (BB), which assumes a hierarchy,

T | µ ∼ Bin(m,µ), µ ∼ Beta(α, β),

where the probability of success is drawn from a beta distribution. BB may be
reparameterized, as noted in (Morel and Neerchal, 2012, Section 4.2) and (Prentice,
1986) for example, using

α = pφ−1(1− φ) and β = (1− p)φ−1(1− φ)

⇐⇒ p =
α

α+ β
and φ =

1

α+ β + 1
,

so that p ≡ E(µ) ∈ (0, 1) can be interpreted as a probability of success and

Var(T ) = mp(1− p){1 + φ(m− 1)}.

For the ZIB, RCB, and BB distributions as stated here, φ ∈ (0, 1) is seen as an
overdispersion parameter with respect to the binomial distribution where φ ↓ 0 cor-
responds to “no overdispersion”. Although ZIB, RCB, and BB are not exponential
families, and therefore do not fall into the classical GLM framework, regressions may
be linked to any of the individual parameters and inference for β may be carried
out through the linked likelihood.

Adding random effects to the regression model of a GLM is a flexible way to
model extra variation between observations or to group observations that naturally
belong to the same cluster (c.f. Agresti, 2002; Morel and Neerchal, 2012). However,
because random effects are unobserved and manifest themselves as integrals in the
likelihood, computation quickly becomes difficult as random effect structures are
allowed to become more elaborate. A compromise between flexibility and compu-
tation is found in the random intercept model, where only a random intercept is
assumed. Logistic regression with a random intercept has been considered by Aitkin
(1996), among others, who use nonparametric maximum likelihood (NPMLE) to
avoid making assumptions about the distribution of the random intercept.

Finite mixture distributions are often used to model the situation of multiple
latent subpopulations. In the basic finite mixture of binomials,

f(t | m,θ) =
J∑
j=1

πjBin(t | m,µj), (2.1)

it is assumed that there are J subpopulations, and a latent process Z is selecting
from the labels (1, . . . , J) with corresponding probabilities (π1, . . . , πJ). The finite
mixture (2.1) can be extended to a finite mixture of regressions by linking regressions

µj = G(xTβj), for j = 1, . . . , J.

This idea is discussed in Frühwirth-Schnatter (2006), and extended to more elabo-
rate processes for the latent Z.

The remainder of this paper presents the Mixture Link model: a completely
likelihood-based binomial model for extra variation which assumes a finite mixture



distribution with a regression linked to the marginal probability of success. The
finite mixture is used to handle heterogeneity in a robust way, but unlike the fi-
nite mixture of regressions model, the emphasis is on a single regression for the
entire population. Therefore, the finite mixture of regressions can be thought of
as “conditional modeling” with respect to latent subpopulations, while Mixture
Link is “marginal modeling” on the entire population, with built in tolerance for
heterogeneity.

3. Mixture Link Model

Consider a random variable T following the finite mixture of binomials distribution
(2.1), which we will denote as T ∼ BinMix(m,µ,π). Without further restriction,
the component probabilities of success µ = (µ1, . . . , µJ) naturally lie within the
rectangle [0, 1]J , and the subpopulation proportions π = (π1, . . . , πJ) are within
the J-dimensional probability simplex SJ = {µ ∈ [0, 1]J :

∑J
j=1 µj = 1}. Notice

that

E(T ) =

J∑
j=1

πjmµj = mµTπ,

where µTπ is the mixture probability of success. Analogously to logistic regression
under the GLM framework, our goal is to link the regression xTβ to the finite
mixture by enforcing the constraint µTπ = p where p = G(xTβ). The space of all
µ that honors the link is then

A(p,π) = {µ ∈ [0, 1]J : µTπ = p};

when there is no confusion, we will write A as shorthand.
Next consider an independent sample

Ti
ind∼ BinMix(mi,µi,π), µi ∈ Ai, i = 1, . . . , n,

where Ai = A(pi,π) and pi = G(xTi β). Here Ai and µi vary with i to reflect
that observations may have distinct covariates xi. When µ1, . . . ,µn are treated as
fixed and unknown quantities, taking a maximum likelihood approach would mean
maximizing

n∏
i=1


J∑
j=1

πjBin(ti | mi, µij)

 , subject to γ(µ1, . . . ,µn,π) = Xβ, (3.1)

γ(µ1, . . . ,µn,π) =

g(µT1 π)
...

g(µTnπ)

 : n× 1, and X =

x
T
1
...
xTn

 : n× d,

where g = G−1, The parameter β only enters the optimization problem through
the constraint, which suggests a that a profile likelihood approach such as

Q(β) = sup
µ1,...,µn,π

{logL(θ) : γ(µ1, . . . ,µn,π) = Xβ}

may be more natural to consider. However, the overall optimization problem is still
on the space

[0, 1]J × · · · × [0, 1]J︸ ︷︷ ︸
n

×SJ × Rd,
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Figure 1: A sample drawn from A: (a) n = 100 with J = 2, π = (34 ,
1
4), p = 2

3 ,
and (b) n = 300 with J = 3, π = (14 ,

1
2 ,

1
4), p = 2

3 .

whose dimension is increasing with the sample size n due to the nuisance parameters
µi for i = 1, . . . , n, This is generally not a desirable quality for a model.

Instead of attacking the optimization problem (3.1) directly, we consider a hier-
archical model where the µi are unobservable random effects. The effects must be
integrated out to obtain the likelihood of the observed data. This can be contrasted
to the profile optimization which removes the µi from consideration by an inner
optimization. The tradeoff between having too many fixed nuisance parameters vs.
unobservable random effects is traditionally seen in linear mixed models (McCulloch
et al., 2008).

But what should be the distribution of the random effects? Because Ai is a
bounded convex set, we can find vertices v

(i)
1 , . . . ,v

(i)
ki
∈ RJ such that

Ai = conv(v
(i)
1 , . . . ,v

(i)
ki

) =
{ ki∑
`=1

λ`v
(i)
` : λ ∈ Ski

}
=
{
V (i)λ : λ ∈ Ski

}
, (3.2)

where Ski is the ki-dimensional probability simplex and V (i) = (v
(i)
1 · · ·v

(i)
ki

) ∈
RJ×ki . Note that V (i) may be different for each observation when the set Ai depends
on a covariate xi. The number of vertices ki may also vary with each observation.

Now a natural way to place a distribution on the set A is to let λ ∼ Dirichletk(α),
whose density is

f(λ | α) =
λα1−1
1 · · ·λαk−1

k

B(α)
· I(λ ∈ Sk), where B(α) =

Γ(α1) · · ·Γ(αk)

Γ(α1 + · · ·+ αk)
.

Danaher et al. (2012) recently proposed priors based on the Minkowski-Weyl decom-
position to enforce (biologically motivated) polyhedral constraints for parameters
in Bayesian analysis. A Dirichlet prior is proposed for the simplex between the
extreme points; the Dirichlet distribution is used in a similar manner in the present
work. Figure 1 shows an example of the set A for J = 2 and J = 3, along with a
random sample taken on the set using a Dirichletk(1) distribution. Figure 2 shows
how the set A changes as p is varied when J = 3. Note that the number of vertices
k can change, as can the placement of the hyperplane segment. It is clear that for
J = 3 it is possible for k to take on values at least in {3, 4, 5, 6}, and certainly k = J
need not hold.



(a) π = ( 1
4 ,

1
2 ,

1
4 ). (b) π = ( 1

3 ,
1
3 ,

1
3 ).

Figure 2: The set
{
µ ∈ [0, 1]3 : µ1π1 + µ2π2 + µ3π3 = p

}
visualized with two dif-

ferent settings of π. In each case, p ∈ {18 ,
1
4 ,

1
2 ,

3
4} is shown (from front to back).

We can now write the hierarchical Mixture Link model as

Ti | µi,π
ind∼ BinMix(mi,µi,π)

µi = V (i)λ(i), where V (i) = (v
(i)
1 · · ·v

(i)
ki

) are vertices of A(pi,π)

λ(i) ind∼ Dirichletki(α
(i)). (3.3)

Notice that the dimension of α(i) = (α
(i)
1 , . . . , α

(i)
ki

) may vary between observations,
depending on π and pi. Because our main interest is when pi vary due to a re-
gression, we make the further assumption that α(i) = κ1 where 1 = (1, . . . , 1) and
κ > 0. There are also identifiability issues in letting the components of α(i) vary
because the vertices in V (i) are not strictly ordered, therefore it is difficult to main-

tain a correspondence between v
(i)
` and α

(i)
` . Figure 3 shows Dirichlet distributions

plotted for several settings of κ when J = 3. Notice that κ = 1 corresponds to the
uniform distribution of λ(i) on the simplex (and furthermore to a uniform distri-
bution of µi on Ai), while 0 < κ < 1 results in more density focused toward the
vertices than the interior, and κ > 1 yields more density in the interior of the sim-
plex. The hierarchy (3.3) is parameterized by θ = (p,π, κ) ∈ R1+(J−1)+1 if Ti are
taken to be independent and identically distributed, or θ = (β,π, κ) ∈ Rd+(J−1)+1

in the case of a regression. In a frequentist analysis, θ will be a fixed but unknown
parameter. A Bayesian analysis would put a prior on β, the main parameter of
interest, and perhaps π and κ as well. The density is given by

f(t | m, p,π, κ) =

(
m

t

) J∑
j=1

πj

∫
vt(1− v)m−t · fA(j)(v) dv (3.4)

where fA(j)(v) is the marginal density of µj on the set A. The notation T ∼
MixLinkJ(m, p,π, κ) will be used to say that a random variable T is drawn from

this distribution. The joint likelihood of the sample Ti
ind∼ MixLinkJ(mi, pi,π, κ)
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Figure 3: Dirichlet3(λ | κ1) density for several settings of κ. Only λ1 and λ2 are
plotted, as λ3 = 1− λ1 − λ2 is redundant.

for i = 1, . . . , n is then

L(θ) =

n∏
i=1


(
mi

ti

) J∑
j=1

πj

∫
vti(1− v)mi−ti · f

A
(j)
i

(v) dv,

 . (3.5)

Computational details for the Mixture Link model, including identification of the
vertices of Ai and evaluation of the density, are given in the Ph.D. thesis (Raim,
2013).

4. Mixture Link Density

To understand the utility of the Mixture Link distribution for modeling overdis-
persion in practice, we now examine some plots of the density. Here we consider
the distribution MixLinkJ(m, p,π, κ), i.e. without regression. Plotted in Figures
4 and 5 are the densities for the RCB and BB distributions, respectively, which



were introduced in section 2. For each of p ∈ {0.25, 0.50}, the density is plotted for
m = 20 trials and several settings of φ. Figure 6 shows corresponding plots for the
Mixture Link Density letting J = 2 and κ = 1. Each shows the binomial density
for reference. For beta-binomial, as the overdispersion parameter φ increases, the
density moves from the standard binomial to one where most mass is at the extreme
support values 0 and 20. Under RCB, increasing φ leads to the formation of a sec-
ond mode. For the Mixture Link density, increasing π has the effect of fattening
the tails compared to the standard binomial.

Figures 7, 8, and 9 show several more cases of the Mixture Link density, focusing
only on the case p = 0.5 but varying κ ∈ {0.5, 1, 2} and J ∈ {2, 3}. A variety of
shapes can be seen for the limited settings of π that are shown. Expressing two
modes is possible, as is inflating mass at the extreme support values 0 and 20.

5. Example: Hiroshima Data

Awa et al. (1971) and Sofuni et al. (1978) study the effects of radiation exposure
on chromosome aberrations in survivors of the atomic bombs that were used in
Hiroshima and Nagasaki. Subjects in the study consist of 649 residents in Hiroshima
and 403 residents in Nagasaki for whom radiation dose estimates were available.
Subjects are placed into exposed and control groups. Individuals in the control
group were either not present in their city at the time of the bombings, or received
an estimated dose of less than one rad. A chromosome analysis is carried out on mi

circulating lymphocytes for the ith subject, and of those, the number of chromosome
aberrations ti is recorded. Two types of radiation exposure are considered, neutron
and gamma, where higher doses of neutron exposure in Hiroshima are suspected of
leading to increased incidence of aberrations.

A subset of this data is featured in Morel and Neerchal (2012) as an illustrative
example for goodness-of-fit in binomial models for extra variation. It is natural
to suspect that overdispersion will be an issue in this data under standard logis-
tic regression, as the presence or absence of aberrations within the mi circulating
lymphocytes of a particular subject may not be independent. Here, n = 648 ob-
servations from the Hiroshima portion of the original data are considered, and the
covariate di represents the sum of neutron and gamma exposure for the ith subject.
The total exposure is then normalized to

zi =
di − d√

1
n

∑n
i=1(di − d)2

, i = 1, . . . n.

To compare several binomial models with extra variation on the smaller Hi-
roshima dataset, we consider the goodness-of-fit (GOF) test

H0 : Ti
ind∼ f(ti | mi,θ) for some θ ∈ Θ vs. H1 : Not,

where f is fully specified up to a possibly unknown parameter θ, and Θ ⊆ Rq. For
binomial data with mi varying with observations, Neerchal and Morel (1998) pro-
posed the following variation on the usual Pearson chi-square test statistic. Suppose
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Figure 4: BB densities.
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Figure 5: RCB densities.
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Figure 6: Mixture Link densities.
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Figure 7: Compare Mixture Link densities for J = 2 and J = 3 when κ = 0.5.
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Figure 8: Compare Mixture Link densities for J = 2 and J = 3 when κ = 1.
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I1, . . . , Ir are disjoint intervals that cover [0, 1], and let

X(θ) =
r∑
`=1

[O` − E`(θ)]2

E`(θ)
, where (5.1)

E`(θ) =

n∑
i=1

mi∑
t=0

f(t | mi,θ)I

(
ti
mi
∈ I`

)
and O` =

n∑
i=1

I

(
ti
mi
∈ I`

)
.

Sutradhar et al. (2008) shows that, when the null distribution f is RCB, X(θ) ∼
χ2
r−1 when all parameters are known and X(θ̂) ∼ χ2

r−1−q when θ ∈ Θ ⊆ Rq is
estimated by maximizing the grouped likelihood

Lg(θ) =

n∏
i=1

r∏
`=1

P

(
ti
mi
∈ I`

∣∣∣∣ mi,θ

)I( ti
mi
∈I`

) ,
In practice, it is more natural to work with the ungrouped likelihood

Lu(θ) =

n∏
i=1

f(ti | mi,θ)

of the observed Ti. There is a noted “recovery” of degrees of freedom in the GOF
statistic when the ungrouped MLE is used, so that X(θ̂) follows a χ2

ν distribution
with ν between r − 1 − q and r − 1. Although the theory in (Sutradhar et al.,
2008) is stated specifically for the RCB distribution, proofs are given for general
binomial models with varying mi. However, a number of regularity conditions are
assumed to ensure, for example, first-order efficiency of the MLE. Our GOF studies
use the ungrouped MLE and consider p-values based on ν = r − 1− q. Recall that
smaller ν will result in a more right-skewed χ2

ν distribution. Consequently, a fixed
X(θ̂) will count as stronger evidence against the hypothesis of adequate fit H0, and
therefore this choice of ν is conservative in declaring that a model fits adequately.
The selection of intervals I` is left up to the analyst, but it is suggested to follow the
rule of thumb that all E`(θ) > 5. Some discussion on interval selection is given in
(Kendall et al., 1991, Section 30.2); common choices include equal width intervals
and those having equal probability.

To compute estimates and standard errors under the Mixture Link model, the
optim function in R (R Core Team, 2013) is used to numerically maximize the
logarithm of the likelihood (3.5). A suitable transformation θ = h(ϑ) allows the
optimizer to work in Rq and ensures that θ is restricted to the parameter space.
Standard errors are obtained from the Hessian H evaluated at the solution θ̂, after
adjustment by the Jacobian of h.

The following models are compared for goodness-of-fit for the Hiroshima dataset:

• Logistic: Ti
ind∼ Bin(mi, pi),

• RCB: Ti
ind∼ RCB(mi, pi, φ),

• BB: Ti
ind∼ BB(mi, pi, φ),

• RCB-Reg: Ti
ind∼ RCB(mi, pi, φi),

• BB-Reg: Ti
ind∼ BB(mi, pi, φi),

• MixLinkJ2: Ti
ind∼ MixLink2(mi, pi,π, κ),

where g = G−1 is the logistic link function, g(pi) = β0 + β1zi + β2z
2
i for all models,

and g(φi) = γ0 + γ1zi + γ2z
2
i for the two “-Reg” models. The models RCB-Reg and



Table 1: Model comparison statistics.

GOF
Model LogLik q AIC BIC statistic df range p-value

Logistic -1814.189 3 3634.400 3647.799 110.38 [17,20] < 10−13

RCB -1567.499 4 3142.997 3160.893 68.25 [15,19] < 10−6

BB -1487.923 4 2983.847 3001.742 93.79 [12,18] < 10−11

RCB-Reg -1546.612 6 3105.224 3132.067 63.96 [18,22] < 10−5

BB-Reg -1429.605 6 2871.211 2898.054 19.40 [17,23] > 0.3063
MixLinkJ2 -1433.331 5 2876.662 2905.506 19.50 [18,23] > 0.3615

Table 2: Maximum likelihood estimates for candidate models, with standard errors
in parentheses.

Logistic
β0 -3.0306 (0.0246)
β1 1.3017 (0.0343)
β2 -0.3071 (0.0158)

RCB
β0 -2.9901 (0.0352)
β1 1.2040 (0.0415)
β2 -0.3429 (0.0242)
φ 0.1511 (0.0080)

BB
β0 -2.9487 (0.0445)
β1 1.1144 (0.0550)
β2 -0.2676 (0.0276)
φ 0.1661 (0.0076)

RCB-Reg
β0 -3.0699 (0.0338)
β1 1.3010 (0.0444)
β2 -0.3705 (0.0244)
γ0 -2.3526 (0.0965)
γ1 0.9331 (0.1569)
γ2 -0.2365 (0.0565)

BB-Reg
β0 -3.0145 (0.0445)
β1 1.3594 (0.0564)
β2 -0.3449 (0.0332)
γ0 -1.8611 (0.0737)
γ1 0.7993 (0.1109)
γ2 -0.1610 (0.0525)

MixLinkJ2
β0 -3.0061 (0.0441)
β1 1.3656 (0.0562)
β2 -0.3383 (0.0314)
π1 0.3297 (0.0175)
κ 1.6293 (0.2472)

BB-Reg have been considered in (Morel and Neerchal, 2012). The quadratic effect
on the regression model was previously suggested in (Sofuni et al., 1978). Morel
and Neerchal (2012) consider linking the regression to the overdispersion parameter
in RCB and BB, in addition to the probability of aberration, indicating that the
amount of overdispersion also varies with radiation dose.

The MLEs and corresponding standard errors for the candidate models are given
in Table 2. Model BB gives estimates that differ the most; these tend to be shrunken
to zero a bit more than in the other models. However, for the most part, all models
give similar estimates of β. The standard errors for β given by the two best models
BB-Reg and MixLinkJ2 are also very similar.

Table 1 shows the GOF test result for each model along with other standard fit
statistics: −2 LogLik, Akaike information criteria (AIC) and Bayesian information
criterion (BIC). Here, LogLik is the maximized value of the log-likelihood so that
AIC = −2 LogLik + 2q and BIC = −2 LogLik + q log(n). We first consider the
information theoretic (AIC and BIC) criteria; the smaller the AIC/BIC, the better
the indication of model fit. As expected, Logistic results in the largest AIC/BIC
because it does not account for the suspected overdispersion. The two RCB models
have smaller AIC/BIC than Logistic, but not as small as in the two BB models.
The BB-Reg model fares appears to fit significantly better than BB, indicating that
the overdispersion parameter varies with radiation dose. The MixLinkJ2 model fits
almost as well as BB-Reg, even without modeling π or κ as a function of radiation
dose.

The GOF results give additional insight into the quality of the fits. For each
model, the intervals I` were chosen by first considering I1 = [0, 0.0099], I2 = (0.0099, 0.0198], . . . , Ir−1 =
(0.2970, 0.3069], Ir = (0.3069, 1]. This partitioning was selected so the results can



be compared to (Morel and Neerchal, 2012). Using the (ungrouped) MLE for the
model, expected counts for each I` were computed, and I` having expected counts
less than 5 were merged with a neighboring interval. Table 1 gives a summary of
the GOF test results and Figure 10 shows additional detail comparing observed
and expected counts. The GOF comparison gives a similar ranking of models as
the AIC/BIC comparison, except that RCB-Reg is seen to have significantly worse
GOF that RCB. Also, the MixLinkJ2 model gives a slightly higher p-value than
BB-Reg, indicating less evidence against adequate fit, due to having one less pa-
rameter. The BB-Reg and MixLinkJ2 models both give a statistically adequate fit
and obtain similar plots in Figure 10. One feature which seems to be a challenge
for the other models to capture is the large number of observations with a very
low proportion of aberrations; these are counted in the first interval. We have not
shown results for ZIB regression, which was designed to capture this feature. At
best (with or without a regression on the inflation parameter) ZIB was able to fit
the first interval well, but did not fit other features of the data as well as any of the
RCB, BB, or Mixture Link models.

6. Conclusions

In this paper, we have presented a new binomial model with extra variation called
Mixture Link, starting from the finite mixture of binomials and linking a regression
to the mixture probability of success. This lead us to consider a random effects
model on the set representing the link from the likelihood to the regression; a
Dirichlet distribution was placed on the simplex between extreme points of the set.
Plots of the Mixture Link density show that it takes on a variety of expressive shapes.
As a promising first application, Mixture Link is shown to fit the Hiroshima data
well in terms of AIC/BIC and goodness-of-fit. Many of the computational details for
the model have been omitted in this paper, but are given in the Ph.D. thesis (Raim,
2013). Initial results for Mixture Link are encouraging, and the model appears
worthy of further study as a tool for the analysis of binomial data.

Acknowledgements

The computational resources used for this work were provided by the High Per-
formance Computing Facility at the University of Maryland, Baltimore County
(www.umbc.edu/hpcf). The first author additionally thanks the facility for finan-
cial support as an RA.

References

A. Agresti. Categorical Data Analysis. Wiley-Interscience, 2nd edition, 2002.

M. Aitkin. A general maximum likelihood analysis of overdispersion in generalized
linear models. Statistics and Computing, 6:251–262, 1996.

A. Awa, T. Honda, T. Sofuni, S. Neriishi, M. Yoshida, and T. Matsui. Chromosome-
aberration frequency in cultured blood-cells in relation to radiation dose of A-
bomb survivor. The Lancet, 298(7730):903–905, 1971.

M. R. Danaher, A. Roy, Z. Chen, S. L. Mumford, and E. F. Schisterman. Minkowski-
Weyl priors for models with parameter constraints: An analysis of the biocycle
study. Journal of the American Statistical Association, 107(500):1395–1409, 2012.

www.umbc.edu/hpcf


1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

GoF for Hiroshima Data Using Logistic Regression

Interval

F
re

qu
en

cy

0
20

40
60

80
10

0
12

0
14

0
●

●

●

●

●

● ●

●
●

● ●
● ● ●

● ● ●
●

●
●

●

(a) Logistic.

1 2 3 4 5 6 7 8 9 11 13 15 17 19

GoF for Hiroshima Data Using RCB

Interval

F
re

qu
en

cy

0
20

40
60

80
10

0
12

0
14

0

●

●

●

●

●

● ●

●
●

● ●

●
●

●
●

● ●
●

● ●

(b) RCB.
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(c) BB.
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(d) RCB-Reg.
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Figure 10: GOF plots for observed vs. expected counts. The grey bars represent
the observed counts for a given interval, and the black dots are the expected counts
under the MLE. Note that the choice of intervals varies between models.
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