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ABSTRACT

Title of dissertation: COMPUTATIONAL METHODS IN FINITE
MIXTURES USING APPROXIMATE INFORMATION
AND REGRESSION LINKED TO THE
MIXTURE MEAN

Andrew M. Raim
Doctor of Philosophy, 2014

Dissertation directed by: Nagaraj K. Neerchal
Professor of Statistics
Department of Mathematics and Statistics
University of Maryland, Baltimore County

Finite mixture distributions are used in applications because of their ability to sup-
port heterogeneity. They also present interesting analytical challenges, often requiring
special consideration in the selection of an appropriate model, inference of unknown pa-
rameters, and identifiability. The main contributions of this thesis are providing an ap-
proximation to the information matrix of a finite mixture of an arbitrary member of the
exponential family, and a novel extension of the generalized linear model (GLM) with an
underlying finite mixture distribution.

Our approximation is equivalent to a complete data information matrix, which helps
to explain previously noted connections between approximate scoring and the Expecta-
tion Maximization (EM) algorithm, and is further generalized to mixtures of an arbitrary
member of the exponential family. To obtain convergence between exact and approximate
information requires a “clustered sampling” assumption so that observations are sampled
from the same (unknown) subpopulation of the mixture, providing an analogue to trials
of a multinomial observation.

We also consider a logistic regression model using a binomial finite mixture, so that
the regression model is linked to the mixture mean. This significant extension of GLM
appears promising for many potential applications such as modeling overdispersion in
the data. Because the mixture mean is a composite parameter which does not appear
explicitly in the likelihood, model formulation and inference pose both theoretical and
computational challenges. We propose a random effects model with effects drawn from a
set representing enforcement of the link. Initial results show that the model is effective at
capturing extra variability while supporting the regression of interest.
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Chapter 1

Introduction

Finite mixture models are widely used in practice and have long been studied in the

statistical literature because of the analytical challenges they present. Finite mixtures are

often used to model a population consisting of multiple subpopulations, whose character-

istics vary for the question under study, but where the subpopulation membership of each

observation is not observed. This is the setup of the classic clustering problem which is

one natural application of finite mixtures. Mixtures can also be useful in handling extra

variability when important covariates have not been recorded. In both cases, the mixture

distribution helps to account for unknown sources of heterogeneity in the data. Ignoring

heterogeneity or failing to capture other important nuances in the data generating process

can lead to the situation of overdispersion (or extra variation), where more variation is

present in the data than a given model is designed to handle. Beside their practical use in

applications, the study of mixtures also leads to a variety of interesting theoretical issues

in identifiability, inference on the mixing distribution, and model selection.

The book by Titterington et al. (1985) provides a comprehensive overview of finite

mixtures from a classical perspective. McLachlan and Peel (2000) present a more modern

overview of general issues in finite mixtures and demonstrate more recent Bayesian and

Expectation-Maximization computational methods. Frühwirth-Schnatter (2006) provides

another modern overview emphasizing Bayesian inference, mixtures of regressions, and

models where the latent mixing process evolves over time. The monograph by Lind-

say (1995) reviews theory on the geometry of mixtures and on the nonparametric maxi-
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mum likelihood estimator. Morel and Neerchal (2012) present an overview of models for

overdispersion, especially for count, binomial, and multinomial data.

Much of the literature on finite mixtures focuses on continuous distributions such

as normal, Student’s t, and their multivariate extensions. Such models have a natural in-

tuition, providing elliptical or near-elliptical shapes on, say, a k-dimensional Euclidean

space. Populations can be viewed geometrically in this space, in terms of their modes,

mutual distances, etc. This thesis focuses instead on finite mixtures of binomial and

multinomial distributions, which are perhaps less intuitive, but often are more appropriate

for modeling data observed under these circumstances. The finite mixture of multino-

mials has been applied to many areas including: clustering of internet traffic (Jorgensen,

2004), text/topic analysis (Hofmann, 1999), item response theory for analysis of educa-

tional or psychological tests (Bolt et al., 2001), and genetics (Toussile and Gassiat, 2009).

Bayesian analysis of the finite mixture of multinomials is studied by Rufo et al. (2007). To

emphasize the difference in graphical intuition, Figure 1.1a plots the density of a mixture

of bivariate normals

πN(µ1,Σ1) + (1− π)N(µ2,Σ2), where π = 0.40,

µ1 =

−1

−1

 , µ2 =

1

1

 , Σ1 =

 1 0.70

0.70 1

 , Σ2 =

 1 −0.80

−0.80 1

 .

Meanwhile, Figure 1.1b illustrates a mixture of two trinomials

πMult3(m,p1) + (1− π)Mult3(m,p2), where

p1 =


1/3

1/3

1/3

 , p2 =


1/6

2/6

3/6

 , π = 0.40, m = 20.

Compared to Figure 1.1a, it is less evident in Figure 1.1b that there are two distinct sub-

2



−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

 0.02 

 0.04 

 0.06  0.06 

 0.08 

 0.08 

 0.1 

 0.12 

 0.14 

Mixture of two bivariate normals

(a)

0 5 10 15 20

0
5

10
15

20

x

y

 0.005 

 0.01 

 0.015 

 0.02 

Mixture of two trinomials

(b)

Figure 1.1: Comparison between two-component bivariate normal mixture vs. two-
component trinomial mixture.

populations in the model. Of course, the two bivariate normal populations could be closer

together, which would make them more difficult to distinguish.

This thesis investigates three problems which have arisen in the study of finite mix-

tures and overdispersion in binomial/multinomial data analysis.

Overview of Chapter 2. The first problem considers an approximate information matrix

which was originally proposed for binomial and multinomial finite mixtures, and has been

used in scoring iterations as a substitute for the Hessian or exact information matrix. This

technique was developed for the random-clumped multinomial (RCM) model, which was

proposed by Morel and Neerchal for overdispersed multinomial data. We show that the

matrix approximation is equivalent to a complete data information matrix, which helps to

explain previously noted connections between approximate scoring and the Expectation

Maximization (EM) algorithm. This equivalence allows the technique of approximate

scoring to be generalized beyond multinomial finite mixture analysis to any missing data

problem where a complete data information matrix and the usual score vector can be

formulated. This includes problems involving finite mixture and continuous mixtures.

3



The approximate scoring algorithm had previously been justified by showing that exact

and approximate information matrices converge together as the number of multinomial

trials m → ∞; this justification does not immediately extend outside of the multinomial

setting. Several simulation studies in this chapter show that approximate scoring and

EM perform very similarly in the neighborhood of a solution, but that the approximate

information may not act as a reliable substitute for the exact information to serve more

general inference purposes such as obtaining standard errors and test statistics. It is also

demonstrated that a hybrid algorithm, using approximate scoring to start an initial path

toward a solution and then switching to Fisher scoring, combines the robustness of the

former with the rapid convergence of the latter.

Overview of Chapter 3. The second problem extends the convergence of the approxi-

mate information discussed in Chapter 2 to the more general setting of exponential family

finite mixtures. To do this, we use a “clustered sampling” scheme so that m observations

are sampled from the same (unknown) subpopulation. The clustered sampling acts as an

analogue to the m trials in the multinomial case. It is proved that the exact and approx-

imate information matrices converge together as m → ∞ and rates for the convergence

are obtained. The proof requires a different approach than the multinomial case, which

depends on properties of the multinomial distribution. It is also noted that the conver-

gence does not occur when, instead, an independent and identically distributed sample of

size m is taken from the finite mixture. Therefore, use of the information matrix approx-

imation is justified in the very practical setting of exponential family finite mixtures, but

only when the clustered sampling scheme applies. The results in this chapter help to shed

light on the binomial/multinomial case, emphasizing that trials are samples taken within

a common subpopulation.

Overview of Chapter 4. The third problem considers the setting of a binomial finite

mixture, and investigates the objective of linking a regression to the mixture probability

4



of success. This can be considered an extension of logistic regression model from the

Generalized Linear Model framework, where a finite mixture is now assumed to support

extra variation in the population. This approach can also be compared to the Gener-

alized Estimating Equations (GEE) approach for ungrouped data, where the analyst is

free to select a covariance structure for observations within-group to support extra varia-

tion. However, our approach supports grouped observations and is completely based on

a likelihood. The finite mixture is not an exponential family, and the mixed probabil-

ity of success is a composite parameter which does not appear directly in the likelihood.

Therefore, a challenge is to formulate the model in such a way that the link is enforced

yet the number of unknown parameters is kept manageable. In this work we formulate

a random effects model called Mixture Link, where the random effects are drawn from

a set representing enforcement of the link. Initial results show that the model is effec-

tive at capturing extra variability while supporting the regression; however, further study

is required to more thoroughly address issues such as identifiability, computation of the

likelihood, and estimation of parameters and standard errors. The approach itself appears

to generalize beyond binomial data analysis, and may be considered for other problems

where the analyst wishes to link a regression to a composite parameter which does not

explicitly appear in the likelihood.

The remainder of Chapter 1 gives background on mixtures and various issues that arise in

their use.

1.1 Mixture Formulation

Before focusing on finite mixtures, it is enlightening to formulate the general mix-

ture model in a similar spirit to (Teicher, 1960) or (Teicher, 1961). Let H denote a class

of densities; often H = {h(· | φ) : φ ∈ Φ} will be a family of densities indexed by a

parameter φ ∈ Φ ⊆ Rd. Let G denote a family of mixing distributions on H. G is often

5



also indexed by a parameter, say θ ∈ Θ. The class of mixture distributions, which will

be denoted by F , is then given by mixing all densities in H by a particular distribution

G ∈ G. A density in F may be written generally as f(x | G) =
∫
H h(x) dG(h). It is

convenient to consider all unknown parameters of f(x | G) as belonging to the mixing

distribution G. A few examples will help to illustrate this framework.

Example 1.1 (Student’s t as a mixture of normals). Let H = {h(· | φ) : φ ∈ Φ} be the

family N(0, σ2), so that φ = σ2 and Φ = (0,∞). Take G to be the Inverse Gamma family

{IG(α = v/2, β = v/2) : v > 0}, indexed by the parameter θ = v and

dGθ(φ) =
βα

Γ(α)
φ−α−1e−β/φdφ =

(v/2)v/2

Γ(v/2)
φ−v/2−1e−v/2φdφ

Then we have

f(x | θ) =

∫
h(x | φ)dGθ(φ)

=

∫ ∞
0

1
√
φ
√

2π
e−x

2/2φ · (v/2)v/2

Γ(v/2)
φ−v/2−1e−v/2φdφ

=
Γ
(
v+1

2

)
√
vπΓ

(
v
2

) (1 +
x2

2

)− v+1
2

.

This is the Student’s t distribution with v degrees of freedom. Therefore, the t distribution

can be considered a continuous mixture of normals. Liu and Rubin (1995) make use of

the multivariate t distribution to handle extra variation beyond the standard multivariate

normal N(µ,Σ) model. The mixture representation is used to provide a complete data

model for use with Expectation-Maximization (see Section 1.5 for a brief overview of

Expectation-Maximization). Finite mixtures of multivariate t’s have been considered to

handle even more variation (McLachlan and Peel, 2000, Chapter 7).

Example 1.2 (Beta-binomial). Let H = {Bin(x | n, φ), φ ∈ (0, 1)}, and take G =

{Gθ(·) : θ ∈ Θ} to be the family Beta(φ | α, β), so that θ = (α, β) and Θ = (0,∞) ×
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(0,∞). Then we have

f(x | θ) =

∫
h(x | φ)dGθ(φ)

=

∫ 1

0

(
n

x

)
φx(1− φ)n−x · φ

α−1(1− φ)β−1

B(α, β)
dφ

=

(
n

x

)
B(α + x, β + n− x)

B(α, β)

This is the beta-binomial distribution parameterized by θ = (α, β). It has been used

to model overdispersed binomial data when the standard binomial distribution cannot

sufficiently capture the variation. See for example (Mosimann, 1962) and (Morel and

Neerchal, 2012, Chapter 7).

Example 1.3 (Finite mixture). TakeH = {h(· | φ) : φ ∈ Φ} to be any parametric family,

and let G be the family with densities

dGθ(φ) =
s∑
j=1

πjI(φ = φj) =


φ1 w.p. π1

...

φs w.p. πs

so that φ1, . . . ,φs are points chosen from Φ, and π = (π1, . . . , πs) forms a discrete

probability distribution. The resulting mixture distribution is

f(x | θ) =

∫
h(x | φ)dGθ(φ) =

s∑
`=1

π`h(x | φ`) (1.1)

This is the standard finite mixture model, with θ = (φ1, . . . ,φs,π), which will be the

focus for much of the thesis. In statistical applications, both the support points and masses

of G will usually be unknown and hence need to be estimated. This thesis will often

consider H to be the family of multinomial distributions {Multk(m,φ) : φ ∈ Φ}, where

Φ is the probability simplex in Rk.
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The finite mixture has an appealing intuition. Consider the two-stage sampling

process

Zi ∼ Discrete(1, . . . , s;π),

Xi | Zi = j ∼ f(x | φj),

where (Xi, Zi) are independent for i = 1, . . . , n, and Discrete(a1, . . . , as;π) denotes the

distribution having support a1, . . . , as with respective probabilities π1, . . . , πs. If both

X1, . . . ,Xn and Z1, . . . , Zn are observed, we have classified data among s populations.

A problem in this framework might be to predict the class Z for a new observation X ,

given past observations. If only X1, . . . ,Xn are observed, the data naturally belong to

s unobserved clusters and are distributed according to (1.1). Estimating unknown pa-

rameters and determining cluster membership therefore can be seen as a more difficult

problem than classification. Finite mixtures provide a natural likelihood-based way to

approach this problem, and this use is called “model-based clustering”.

In practice, the number of support points s of G is not known and must be deter-

mined from the data or prior knowledge. Determination of s through the data has been

considered a difficult theoretical issue. Approaches include information-theoretic model

selection (e.g. AIC) and formal hypothesis testing. McLachlan and Peel (2000, Chapter

6) provide an overview.

Example 1.4 (Finite mixture with proportional odds model as mixing distribution). Again

takeH to be any parametric family, and let G be the family with densities

dGθ(φ) =


φ1 w.p. P(α0 < Z −wTβ ≤ α1)

...

φs w.p. P(αs−1 < Z −wTβ ≤ αs)
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where α0, . . . , αs are fixed numbers such that α0 < . . . < αs, α0 = −∞, and αs = ∞.

Let us assume that Z − wTβ ∼ Logistic(0, 1), and that w is a p-dimensional covariate

with coefficients β. This yields the finite mixture

f(x | Gθ) =

∫
h(x | φ)dGθ(φ) =

s∑
`=1

P(α`−1 < Z −wTβ ≤ α`)h(x | φ`),

where θ = (φ1, . . . ,φs,α,β). Now the mixing probabilities themselves are parametric

functions that depend on a regression. Such models have been referred to as latent regres-

sion models (Dayton and Macready, 1988). This particular model is being proposed by

Huang (2012) to address covariate measurement error in the estimation of average causal

effect.

Example 1.5 (Zero-Inflated Binomial). Here is an example where the class H is not a

parametric family. Let

H = {I(x = 0)} ∪ {Bin(x | m,φ) : φ ∈ (0, 1)},

and for elements h ∈ H suppose

dGθ(h) =


I(x = 0) w.p. π

Bin(x | m, p) w.p. 1− π

0 o.w.

so that θ = (p, π). Then we obtain

f(x | Gθ) =

∫
H
h(x)dGθ(h) = πI(x = 0) + (1− π)Bin(x | m, p)

which is the zero-inflated binomial (Hall, 2000).

One appealing aspect of mixture distributions is that it is usually easy to draw a
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sample from them. We have already mentioned the special case of finite mixtures. For a

general mixture this can be done in two phases: first sample h ∼ G for a given G ∈ G,

then drawX from the density h. The resultingX will have the distribution f(· | G).

1.2 Moments of Mixtures

Let ν denote the dominating measure for densities in H. Under a mixture distribu-

tion, the expected value and variance are given by

E(X) =

∫ ∫
xh(x | φ)dG(φ)dν(x) =

∫
E(X | φ)dG(φ) = E[E(X | φ)]

and

Var(X) =

∫ ∫
[x− E(X)] [x− E(X)]T h(x | φ)dG(φ)dν(x)

=

∫
Varφ(X)dG(φ) +

∫
[E(X | φ)− E(X)] [E(X | φ)− E(X)]T dG(φ)

= E[Var(X | φ)] + Var[E(X | φ)],

provided that the integrals exist and the order of integration may be changed. Notice that

Var[E(X | φ)] is positive semidefinite, so we have the result

Var(X)− E[Var(X | φ)] is positive semidefinite.

In other words the variance under the mixture is larger than the expected variance given

a particular φ. This gives a simple justification for using mixtures to address overdis-

persion. For our main scenario of interest, the finite mixture, the mean and variance
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expressions become

E(X) =
s∑
`=1

π` E(X | φ`) and

Var(X) =
s∑
`=1

π` Var(X | φ`) +
s∑
`=1

π` [E(X | φ`)− E(X)] [E(X | φ`)− E(X)]T .

1.3 Identifiability

One major issue in the use of mixtures is identifiability. Consider the mapping

L : G → F that takes a mixing distribution G, integrates the family H of component

distributions with respect to G, and results in a specific mixture distribution.

Definition 1.6 (Identifiability). A family of mixtures F is said to be identifiable if L is a

one-to-one function. That is

f(· | G) = f(· | G∗) =⇒ G = G∗,

which can also be written as

f(x | G)
a.s.
= f(x | G∗) =⇒ G = G∗.

If G = {Gθ : θ ∈ Θ} so that F = {f(x | Gθ) : θ ∈ Θ} is a parametric family,

identifiability means that

f(x | Gθ)
a.s.
= f(x | Gθ∗) =⇒ θ = θ∗.

Identifiability is often considered to be a minimum requirement for a statistical

model to be useful. If it fails, two different models in F will yield the exact same like-

lihood no matter which data is observed, therefore one cannot hope to obtain evidence
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of one versus the other through the data. Proving or disproving identifiability in mixture

models can be challenging. Rao (1992, Chapter 8) provides an overview of the theory of

identifiability. Less strict criteria such as local identifiability can also be considered; see

for example (Rothenberg, 1971) and (Paulino and de Bragança Pereira, 1994).

1.4 Fisher Information

The Fisher information matrix (FIM)

I(θ) = Var

(
∂

∂θ
log f(x | θ)

)
= E

[{
∂

∂θ
log f(x | θ)

}{
∂

∂θ
log f(x | θ)

}T]

plays an important role in statistics when it exists. We say that I(θ) is the expected

information about θ contained in the random variable X . When θ is a scalar, the scalar

I(θ) is larger when there is increased ability for X to provide inference about θ. More

generally, when θ ∈ Rq, then I(θ) is a q × q matrix. Under certain regularity conditions

(Shao, 2008, Section 3.1) the matrix can be rewritten

I(θ) = E

[
− ∂2

∂θ∂θT
log f(x | θ)

]
,

which emphasizes that the “information” is quantifying the degree of curvature in the

log-likelihood at θ. A likelihood which is usually more flat (usually means with respect

to the distribution ofX) around θ will be reflected by a lower Fisher information. Fisher

information is not appropriate when certain basic assumptions, such as differentiability of

f(x | θ) and θ being an interior point of Θ, are not met. The matrix I−1(θ) represents the

asymptotically optimal variance (under appropriate regularity conditions) of an estimator

θ̂ under an independent and identically distributed sampleX1, . . . ,Xn from f(x | θ), as

the sample size n tends to infinity. In this sense, a larger amount of information corre-
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sponds to more precise inference being possible. Furthermore, for an unbiased estimator

θ̂ of θ, the Cramer-Rao Lower Bound states that

Var(θ̂) ≥ I−1(θ̂)

where “A ≥ B” is taken to mean that A − B is positive semidefinite when A and B

are q × q matrices. In this sense, I−1(θ) represents the most precise inference possible

for any unbiased estimator, which may or may not be attainable by some estimator in that

class. Under the reparameterization ψ(θ), the information matrix with respect to ψ may

be obtained using the Jacobian of the transformation ψ 7→ θ as

I(ψ) = Var

(
∂

∂ψ
log f(x | ψ)

)
= Var

(
∂ψ

∂θ

∂

∂θ
log f(x | θ)

)
=

(
∂ψ

∂θ

)
Var

(
∂

∂θ
log f(x | θ)

)(
∂ψ

∂θ

)T
=

(
∂ψ

∂θ

)
I(θ)

(
∂ψ

∂θ

)T
.

Quantities such as

I(θ) = − ∂2

∂θ∂θT
log f(x | θ) or J(θ) =

{
∂

∂θ
log f(x | θ)

}{
∂

∂θ
log f(x | θ)

}T

describing the “observed information” are often used to estimate the variance, and do

not require computation of an expectation which may be analytically intractable. For

example, Boldea and Magnus (2009) give expressions for I(θ) and J(θ) in the setting of

the multivariate normal finite mixture. Properties of observed information such as near-

singularity depend on the sample, which is one reason that I(θ) would be preferred in

variance estimation. In this thesis, we consider I(θ) to be a quantity of interest in its own

right, and generally do not make use of I(θ) and J(θ).
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1.5 Estimation

Before electronic computers were widely available, estimation in finite mixtures

was often carried out by the method of moments. The idea is to express the unknown

parameters θ = (θ1, . . . , θq) as functions of r moments E[ψ1(X)], . . . ,E[ψr(X)] so that

θ1 = g1 (E[ψ1(X)], . . . ,E[ψr(X)])

...

θq = gq (E[ψ1(X)], . . . ,E[ψr(X)]) .

The moments E[ψj(X)] can then be substituted by sample moments, yielding an estimate

for θ. Approaches such as the method of maximum likelihood (MLE) and Bayesian in-

ference are often too computationally tedious to implement by hand for mixtures because

they require iterative procedures to implement them. These approaches have become

standard as computers have became available. MLEs are often computed using Newton-

Raphson iterations

θ(g+1) = θ(g) −H−1(θ(g))S(θ(g)), where

S(θ) =
∂

∂θ
log f(x | θ), and H(θ) =

∂2

∂θ∂θT
log f(x | θ).

Starting these iterations at an initial guess θ(0) and iterating until convergence yields an

MLE θ̂, or more precisely a critical point of the log-likelihood which may also be a

maximizer. A useful byproduct is the matrix −H−1(θ̂), which is an estimator of the

asymptotic variance of the MLE. The square roots of the diagonal elements of this matrix

are often taken as standard errors. A popular alternative is Fisher scoring, whose iterations

are of the form

θ(g+1) = θ(g) + I−1(θ(g))S(θ(g)).
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Fisher scoring is often preferred over Newton-Raphson because the Hessian of the log-

likelihood, and its properties such as near-singularity, may vary greatly based on the sam-

ple. On the other hand, the matrix I(θ) only depends on the sample when θ is esti-

mated by θ̂. Fisher scoring iterations yield the byproduct I−1(θ̂), which is the asymp-

totic variance of the MLE. Dempster et al. (1977) helped to formalize the Expectation-

Maximization (EM) algorithm, which has since been applied to an immense number of

problems. The idea is to supplement the observed data y with missing data z. The

complete data (y, z) often has a likelihood with a much simpler form than the marginal

likelihood of the observed data y. EM considers the decomposition

log f(y, z | θ) = log f(y | θ) + log f(z | y,θ)

=⇒ log f(y,θ) = Eθ′
[

log f(y, z,θ) | y
]
− Eθ′

[
log f(z | y,θ) | y

]
⇐⇒ log f(y,θ) = Q(θ | θ′)−H(θ | θ′),

where the notation Eθ′(·) means that the expectation is evaluated at θ = θ′, which is

some given value of the parameters. The conditional expectation given y takes care of

the unobservable z variables, transforming them into functions of the given θ′ we can be

explicitly computed. EM focuses on maximizing only theQ(θ | θ′) function, which often

inherits a simple form from the complete data log-likelihood. The EM algorithm can then

be written as follows, starting from an initial guess θ(0)

E-step: Compute Q(θ | θ(0))

M-step: Maximize Q(θ | θ(0)) with respect to θ to obtain θ(1)

These steps are then repeated until some convergence criteria is met. It is straightforward

to show that, as long as the Q(θ | θ(g)) function is increased, the H(θ | θ(g)) function

is not decreased. Therefore, EM is also maximizing log f(y | θ), and hence computing
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an MLE. For the standard finite mixture from Example 1.3, the subpopulation of each

observation can be considered missing data, leading to a complete data model

Yi | Zi = ` ∼ f(y | φ`),

Zi ∼ Discrete(1, . . . , s;π),

where (Xi, Zi) are independent for i = 1, . . . , n. The complete data likelihood then has

a convenient product form

L(θ) =
n∏
i=1

s∏
`=1

[π`f(xi | φ`)]I(Zi=`) .

Unlike Newton-Raphson and Fisher scoring, the EM algorithm does not yield an estimate

for the asymptotic covariance of the MLE as a byproduct. Several extensions of EM such

as (Louis, 1982) and (Meng and Rubin, 1991) have been proposed to yield estimates of

the covariance.
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Chapter 2

Approximate Information and Scoring Under Multi-

nomial Finite Mixtures

2.1 Introduction

This chapter considers an approximate scoring technique proposed by Morel and

Nagaraj (1993), and subsequently investigated in (Neerchal and Morel, 1998) and (Neer-

chal and Morel, 2005). These authors used the technique to compute maximum likelihood

estimates (MLEs) in the study of a multinomial model with extra variation. The model,

now known as the random-clumped multinomial (RCM) distribution, has made its way

into mainstream use; for example, as an analytical tool in the SAS FMM procedure (SAS

Institute Inc., 2011). The RCM distribution can be written as a finite mixture of multi-

nomials, an extension of (Blischke, 1962, 1964), with specific constraints on parameters.

Some details on RCM are given later in Example 2.11. Approximate scoring iterations

were formulated in (Morel and Nagaraj, 1993) using the observed score vector along with

a certain matrix which is an approximation to the Fisher information matrix (FIM). The

approximation is motivated by the difficulty in formulating the exact FIM, as it does not

have an analytically tractable form and may be expensive to compute accurately by sim-

ulation (e.g. Monte Carlo). The matrix approximation has been justified by convergence

results showing that the approximate FIM and exact FIM become close for large numbers

of multinomial trials.

The present work shows that the approximate scoring algorithm (AFSA) is closely
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connected to the extremely popular Expectation-Maximization (EM) algorithm (Demp-

ster et al., 1977). In a neighborhood of a solution, the solution is seen to be obtained by

both algorithms at the same convergence rate. An explanation for the connection between

the two algorithms is provided, in that the FIM approximation is actually a “complete

data” information matrix. Closed-form iterations for both EM and AFSA are also ob-

tained, giving expressions with related terms. This work focuses on the finite mixture

of multinomials model, motivated by the work on RCM and noting that RCM can be

obtained as a special case by enforcing some additional constraints. However, once it is

established that AFSA is scoring with a complete data information matrix, its use can be

justified for other finite mixture models and missing data problems. For the cases pre-

sented in this chapter, an AFSA approach leads to practical procedures for computing

MLEs.

A common complaint about EM in its basic form is the convergence rate, which can

be slow depending on the proportion of missing data (Dempster et al., 1977). AFSA will

be seen to have a similar convergence rate to EM. However, both algorithms possess a cer-

tain robustness to the initial value compared to faster methods such as Newton-Raphson

or Fisher scoring, and are less likely to get stuck in neighborhoods of poor local max-

ima or to wander without any progress to a solution. We therefore recommend a hybrid

algorithm, making use of both AFSA and exact scoring, where AFSA is used initially

to progress to the neighborhood of a solution, and exact scoring is then used to give a

fast convergence to that solution. We demonstrate that the proposed hybrid algorithm

combines the best features of both AFSA and Fisher scoring.

The rest of the chapter is organized as follows. In Section 2.3, the approximation to

the information matrix is presented, along with some of its properties. This approximate

information matrix is easily computed and has an immediate application in scoring, which

is presented in Section 2.4. Simulation studies are presented in Section 2.5 to illustrate

convergence properties of the approximate information matrix and approximate scoring.
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Concluding remarks are given in Section 2.6. The contents of this chapter are based on

the paper (Raim et al., 2014), which in turn as an extension of the thesis (Liu, 2005).

Some of the details from that thesis are reproduced here for completeness.

2.2 Preliminaries and Notation

Given an independent sampleX1, . . . ,Xn with joint likelihood L(θ) and θ having

dimension q × 1, the score vector is

S(θ) =
∂

∂θ
logL(θ) =

n∑
i=1

∂

∂θ
log f(xi;θ).

ForXi ∼ Multk(p,m) the score vector for a single observation can be obtained from

∂

∂pa
log f(x;p,m) =

∂

∂pa

[
x1 log p1 + · · ·+ xk−1 log pk−1 + xk log

(
1−

k−1∑
j=1

pj

)]

= xa/pa − xk/pk, (2.1)

so that

∂

∂p
log f(x;p,m) =


x1/p1

...

xk−1/pk−1

−

xk/pk

...

xk/pk

 = D−1x−k −
xk
pk

1,

denotingD := Diag(p1, . . . , pk−1) and x−k := (x1, . . . , xk−1).

The score vector for a single observation X ∼ MultMixk(m,θ) can also be ob-
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tained,

∂ log P(x)

∂pa
=
∂ log{

∑s
`=1 π` P`(x)}
∂pa

=
1

P(x)
πa
∂ Pa(x)

∂pa

=
πa Pa(x)

P(x)

∂ log Pa(x)

∂pa

=
πa Pa(x)

P(x)

[
D−1

a x−k −
xk
pak

1

]
, a = 1, . . . , s,

whereDa := Diag(pa1, . . . , pa,k−1), and

∂ log P(x)

∂πa
=
∂ log{

∑s
`=1 π` P`(x)}
∂πa

=
Pa(x)− Ps(x)

P(x)
, a = 1, . . . , s− 1.

Next, consider the q × q FIM for the independent sampleX1, . . . ,Xn

I(θ) = Var(S(θ)) = E

[{
∂

∂θ
logL(θ)

}{
∂

∂θ
logL(θ)

}T]

= E

[
− ∂2

∂θ∂θT
logL(θ)

]
.

The last equality holds under appropriate regularity conditions. For the multinomial FIM,

we may use (2.1) to obtain

∂

∂pa

∂

∂pb
log f(x;p,m) =


xk/p

2
k if a 6= b

−xa/p2
a − xk/p2

k otherwise

and so

∂

∂p∂pT
log f(x;p,m) = Diag

(
−x1

p2
1

, . . . ,−xk−1

p2
k−1

)
− xk
p2
k

11T .
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Therefore, we have

I(p) = E

(
− ∂

∂p∂pT
log f(x;p,m)

)
= Diag

(
mp1

p2
1

, . . . ,
mpk−1

p2
k−1

)
+
mpk
p2
k

11T

= m
(
D−1 + p−1

k 11T
)
.

The score vector and Hessian of the log-likelihood can be used to implement the Newton-

Raphson algorithm, where the (g + 1)th iteration is given by

θ(g+1) = θ(g) −
{

∂2

∂θ∂θT
logL(θ(g))

}−1

S(θ(g)).

The Hessian may be replaced with the FIM to implement Fisher Scoring

θ(g+1) = θ(g) + I−1(θ(g)) S(θ(g)).

In order for the estimation problem to be well-defined in the first place, the model

must be identifiable. For finite mixtures, this is taken to mean that the equality

s∑
`=1

π`f(x;θ`)
a.s.
=

v∑
`=1

λ`f(x; ξ`)

implies s = v, π` = λρ(`), and p` = ξρ(`) for all ` = 1, . . . , s, where (ρ(1), . . . , ρ(s))

is some permutation of (1, . . . , s) (McLachlan and Peel, 2000, Section 1.14). Chandra

(1977) provides some insight into the identifiability issue, and relates the identifiabil-

ity of a family of multivariate mixtures to its corresponding marginal mixtures. In the

present case, the multivariate mixtures consist of multinomial densities, and the univari-

ate marginal densities are binomials. It is known that a finite mixture of s components

from the family { Multk(m,p) : p ∈ (0, 1)k,
∑k

j=1 pj = 1 } is identifiable if and only if

m ≥ 2s− 1; see, for example, Elmore and Wang (2003). Then a sufficient condition for
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model (2.3) to be identifiable is that mi ≥ 2s − 1 for at least one observation. This can

be seen by the following lemma.

Lemma 2.1. Suppose Xi
ind∼ fi(x;θ), i = 1, . . . , n, where fi share a common parameter

θ, and for at least one r ∈ {1, . . . , n} the family {fr(·;θ) : θ ∈ Θ} is identifiable. Then

the joint model is identifiable.

Proof. WLOG assume that r = 1, and suppose we have

n∏
i=1

fi(xi;θ)
a.s.
=

n∏
i=1

fi(xi; ξ).

Integrating both sides with respect to x2, . . . ,xn, using the appropriate dominating mea-

sure,

f1(x1;θ)
a.s.
= f1(x1; ξ).

Since the family {f1(·;θ) : θ ∈ Θ} is identifiable, this implies θ = ξ. Hence the joint

family {
∏n

i=1 fi(·;θ) : θ ∈ Θ} is identifiable.

2.3 An Approximation to the Information Matrix

Consider the multinomial sample space with m trials placed into k categories at

random,

Ω =
{

(x1, . . . , xk) : xj ∈ {0, 1, . . . ,m},
k∑
j=1

xj = m
}
.

The standard multinomial density is

f(x;p,m) =
m!

x1! . . . xk!
px11 . . . pxkk · I(x ∈ Ω),
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where I(·) is the indicator function, and the parameter space is

Θ =
{

(p1, . . . , pk−1) : 0 < pj < 1,
k−1∑
j=1

pj < 1
}
⊆ Rk−1.

If a random variable X has distribution f(x;p,m), we will write X ∼ Multk(p,m).

Following the sampling and overdispersion literature, we will refer to the number of trials

m as the “cluster size” of a multinomial observation.

Suppose there are smultinomial populations Multk(p1,m), . . . ,Multk(ps,m), where

p` = (p`1, . . . , p`,k−1) for ` = 1, . . . , s, and the `th population occurs with proportion π`

in the mixed population. If we drawX from the mixed population, its probability density

is a finite mixture of multinomials

f(x;θ,m) =
s∑
`=1

π`f(x;p`,m), with θ = (p1, . . . ,ps,π) (2.2)

and we will writeX ∼ MultMixk(m,θ). The dimension of θ is q = s(k−1)+(s−1) =

sk − 1, disregarding the redundant parameters p1k, . . . , psk, πs. We will also make use

of the following slightly-less-cumbersome notation for densities: P(x) = f(x;θ,m) for

the mixture, and P`(x) = f(x;p`,m) for the `th component of the mixture. The setting

of this chapter will be an independent sample Xi ∼ MultMixk(mi,θ), for i = 1, . . . , n,

with cluster sizes not necessarily equal; the resulting likelihood is

L(θ) =
n∏
i=1

{
s∑
`=1

π`

[
mi!

xi1! . . . xik!
pxi1`1 . . . pxik`k · I(xi ∈ Ω)

]}
. (2.3)

The inner summation prevents closed-form likelihood maximization, hence our goal will

be to compute the MLE θ̂ numerically. Some additional preliminaries are given in the

supplement.

In general, the information matrix for mixtures involves a complicated expectation

which does not have a tractable form. Since the multinomial mixture has a finite sample
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space, it can be computed naively by using the definition of the expectation

I(θ) =
∑
x∈Ω

{
∂

∂θ
log f(x;θ)

}{
∂

∂θ
log f(x;θ)

}T
f(x;θ), (2.4)

given a particular value for θ. Although the number of terms
(
k+m−1
m

)
in the summation

is finite, it grows quickly with m and k, and this method becomes intractable as m and k

increase. For example, when m = 100 and k = 10, the sample space Ω contains more

than 4.2 trillion elements. To avoid these potentially expensive computations, we extend

the approximate FIM approach of Morel and Nagaraj (1993) to the general finite mixture

of multinomials. The following theorem presents the approximation and its justification.

It was originally proved at this level of generality in (Liu, 2005) although some cases

had been omitted; the proof is reproduced here for completeness. The reader may also

refer to (Morel and Nagaraj, 1991) which addresses the k = s case, as needed for the

random-clumped multinomial distribution.

Theorem 2.2. Suppose X ∼ MultMixk(m,θ) is a single observation from the mixed

population. Denote the exact FIM with respect to X as I(θ). Then an approximation to

the FIM with respect toX is given by the (sk − 1)× (sk − 1) block-diagonal matrix

Ĩ(θ) := Blockdiag (π1F1, . . . , πsFs,Fπ) ,

where for ` = 1, . . . , s

F` = m
[
D−1

` + p−1
`k 11T

]
and D` = Diag(p`1, . . . , p`,k−1)

are (k − 1)× (k − 1) matrices,

Fπ = D−1
π + π−1

s 11T and Dπ = Diag(π1, . . . , πs−1)

24



are (s−1)×(s−1) matrices, and 1 denotes a vector of ones of the appropriate dimension.

To emphasize the dependence of the FIM and the approximation on m, we will also write

Im(θ) and Ĩm(θ). If the vectors p1, . . . ,ps are distinct (i.e. pa 6= pb for every pair of

populations a 6= b), then Im(θ)− Ĩm(θ)→ 0 as m→∞.

Notice that the matrix F` is exactly the FIM of Multk(p`,m) for the `th population,

and Fπ is the FIM of Mults(π, 1) corresponding to the mixing probabilities π. To prove

Theorem 2.2, we will first establish a key inequality from Okamoto (1959) for the tail

probability of the binomial distribution, which was also considered by Blischke (1962).

Lemma 2.3. Suppose X ∼ Binomial(m, p), then for c ≥ 0,

i. P(X/m− p ≥ c) ≤ e−2mc2 ,

ii. P(X/m− p ≤ −c) ≤ e−2mc2 .

Note that the inequalities in Lemma 2.3 can be generalized to where X is a sum of

independent bounded random variables (Hoeffding, 1963), and the bounds on the proba-

bilities may be tightened as well. In Chapter 3, where we extend the convergence results

from the present chapter, we will instead take a different approach.

Theorem 2.4. For a given index b ∈ {1, . . . , s} we have

∑
x∈Ω

s∑
a6=b

πa Pa(x) Pb(x)

P(x)
≤ 2

πb

s∑
a6=b

e−
m
2
δ2ab ,

where δab =
∨k
j=1 |paj − pbj|.

Proof. Denote as Ω(xj) the multinomial sample space when the jth element of x is fixed
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at a number xj . Then we have, for any L ∈ {1, . . . , k},

∑
x∈Ω

πa Pa(x) Pb(x)

P(x)
=

m∑
xL=0

∑
x∈Ω(xL)

πa Pa(x) Pb(x)

P(x)

=
∑

xL≤m2 (paL+pbL)

∑
x∈Ω(xL)

πa Pa(x)
Pb(x)

P(x)
+

∑
xL>

m
2

(paL+pbL)

∑
x∈Ω(xL)

πa Pa(x)

P(x)
Pb(x)

≤
∑

xL≤m2 (paL+pbL)

∑
x∈Ω(xL)

πa
πb

Pa(x) +
∑

xL>
m
2

(paL+pbL)

∑
x∈Ω(xL)

Pb(x)

=
πa
πb

∑
xL≤m2 (paL+pbL)

∑
x∈Ω(xL)

Pa(x) +
∑

xL>
m
2

(paL+pbL)

∑
x∈Ω(xL)

Pb(x). (2.5)

Notice that the last statement above consists of marginal probabilities for the Lth coor-

dinate of k-dimensional multinomials, which are binomial probabilities. Following Blis-

chke (1962), suppose A ∼ Binomial(m, paL) and B ∼ Binomial(m, pbL), then (2.5) is

equal to

πa
πb

P
{
A ≤ m

2
(paL + pbL)

}
+ P

{
B >

m

2
(paL + pbL)

}
. (2.6)

Taking c = 1
2
(paL − pbL) yields

m(paL − c) =
m

2
(paL + pbL),

m(pbL + c) =
m

2
(paL + pbL),

and (2.6) is equivalent to

πa
πb

P {A ≤ m(paL − c)}+ P {B > m(pbL + c)}

=
πa
πb

P {A/m− paL ≤ −c}+ P {B/m− pbL > c}

≤ πa
πb
e−2mc2 + e−2mc2 , by Lemma 2.3

=

(
πa + πb
πb

)
e−

1
2
m(paL−pbL)2 .
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The upper bound can be made as small as possible by selecting L ∈ {1, . . . , k} to obtain

the largest possible (paL − pbL)2; i.e.

πa
πb

P {A ≤ m(paL − c)}+ P {B > m(pbL + c)} =

(
πa + πb
πb

)
e−

1
2
mδ2ab .

Now we have

∑
x∈Ω

s∑
a6=b

πa Pa(x) Pb(x)

P(x)
=

s∑
a6=b

∑
x∈Ω

πa Pa(x) Pb(x)

P(x)

≤
s∑
a6=b

πa + πb
πb

e−
m
2

(paL−pbL)2

≤ 2

πb

s∑
a6=b

e−
m
2

(paL−pbL)2 .

Corollary 2.5. The following intermediate result was obtained in the proof of Theo-

rem 2.4

∑
x∈Ω

πa Pa(x) Pb(x)

P(x)
≤
(
πa + πb
πb

)
e−

1
2
mδ2ab ≤ 2

πb
e−

1
2
mδ2ab .

We are now prepared to prove Theorem 2.2. Following the strategy of Morel and

Nagaraj (1991), we consider the difference between the I(θ) and the limiting matrix Ĩ(θ)

element by element for finite cluster sizes and obtain bounds which converge to zero as

m → ∞. The bound used by Morel and Nagaraj (1991) is slightly different than ours,

since we do not require that k = s.

Proof of Theorem 2.2. Partition the exact FIM as

I(θ) =

C11 C12

C21 C22


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where

C11 =


A11 . . . A1s

... . . . ...

As1 . . . Ass

 , C12 =


A1π

...

Asπ

 = CT
21, C22 = Aππ,

and

Aab = E

({
∂ log f(x;θ)

∂pa

}{
∂ log f(x;θ)

∂pb

}T)
, for a = 1, . . . , s and b = 1, . . . , s,

Aπb = E

({
∂ log f(x;θ)

∂π

}{
∂ log f(x;θ)

∂pb

}T)
, for b = 1, . . . , s

= AT
bπ,

Aππ = E

({
∂ log f(x;θ)

∂π

}{
∂ log f(x;θ)

∂π

}T)
.

We must show that as m→∞,

C11 − Blockdiag(π1F1, . . . , πsFs)→ 0, (2.7)

CT
21 = C12 → 0, (2.8)

C22 − Fπ → 0. (2.9)
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Case (i) First consider the (i, i)th block of C11 − Blockdiag(π1F1, . . . , πsFs)

Di (Aii − πiFi)Di

= Di

{
E

[{
∂

∂pi
log P(x)

}{
∂

∂pi
log P(x)

}T]
− πiFi

}
Di

= π2
iDi E

[
P2
i (x)

P2(x)

∂ log Pi(x)

∂pi

∂ log Pi(x)

∂pTi

]
Di − πiDiFiDi

= π2
i

∑
x∈Ω

Pi(x)

P(x)

(
x−k −

xk
pik
pi

)(
x−k −

xk
pik
pi

)T
Pi(x)

− π2
i

∑
x∈Ω

1

πi

(
x−k −

xk
pik
pi

)(
x−k −

xk
pik
pi

)T
Pi(x) (2.10)

= π2
i

∑
x∈Ω

(
x−k −

xk
pik
pi

)(
x−k −

xk
pik
pi

)T (
Pi(x)

P(x)
− 1

πi

)
Pi(x)

=
πi
p2
ik

∑
x∈Ω

(pikx−k − xkpi) (pikx−k − xkpi)T
(
πi Pi(x)− P(x)

P(x)

)
Pi(x). (2.11)

where xk is the kth element of x and x−k = (x1, . . . , xk−1). We have pre and post-

multiplied by Di so that Theorem 2.4 can be applied. But note that since Di does not

vary over m,

Di {Aii − πiFi}Di → 0 =⇒ Aii − πiFi → 0, as m→∞.

We have also used the fact in step (2.10) that

Di
∂ log Pi(x)

∂pi
= Di

{
D−1

i x−k −
xk
pik

1

}
= x−k −

xk
pik
pi.

We next have for r, s ∈ {1, . . . , k − 1}

[pikxr − xkpir]2 ≤ [xr +mpir]
2 ≤ 4m2.
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Also,

0 ≤
[
[pikxr − xkpir] + [pikxs − xkpis]

]2

= [pikxr − xkpir]2 + [pikxs − xkpis]2 + 2[pikxr − xkpir][pikxs − xkpis]

and similarly

0 ≤
[
[pikxr − xkpir]− [pikxs − xkpis]

]2

= [pikxr − xkpir]2 + [pikxs − xkpis]2 − 2[pikxr − xkpir][pikxs − xkpis],

which implies that

∣∣∣[pikxr − xkpir][pikxs − xkpis]∣∣∣ ≤ 1

2

{
[xr +mpir]

2 + [xs +mpis]
2
}

≤ 4m2.

Notice that this bound is free of r and s, so it holds uniformly over all r, s ∈ {1, . . . , k−1}.

If we denote the (r, s)th element of the matrix given in (2.11) by εrs, we have

|εrs| ≤
4πim

2

p2
ik

∑
x∈Ω

P(x)− πi Pi(x)

P(x)
Pi(x) =

4πim
2

p2
ik

∑
x∈Ω

s∑
j 6=i

πj Pi(x) Pj(x)

P(x)

≤ 8m2

p2
ik

s∑
j 6=i

e−
m
2
δ2ij ,

by Theorem 2.4. By assumption, δ2
ij > 0 for i 6= j, and therefore εrs → 0 as m→∞.
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Case (ii) Next, consider the (i, j)th block of C11 − Blockdiag(π1F1, . . . , πsFs) where

i 6= j.

DiAijDj

= Di

{
E

[{
∂

∂pi
log P(x)

}{
∂

∂pj
log P(x)

}T]}
Dj

= Di

[
E

(
πiπj

P2(x)

∂ Pi(x)

∂pi

∂ Pj(x)

∂pTj

)]
Dj

= πiπjDi

[
E

(
Pi(x) Pj(x)

P2(x)

∂ log Pi(x)

∂pi

∂ log Pj(x)

∂pTj

)]
Dj

= πiπj
∑
x∈Ω

Pi(x) Pj(x)

P2(x)

(
x−k −

xk
pik
pi

)(
x−k −

xk
pjk
pj

)T
P(x)

=
πiπj
pikpjk

∑
x∈Ω

Pi(x) Pj(x)

P(x)
(pikx−k − xkpi) (pjkx−k − xkpj)T . (2.12)

If we now denote the (r, s)th element of the matrix given in (2.12) by εrs, we have

|εrs| ≤
4πiπjm

2

pikpjk

∑
x∈Ω

Pi(x) Pj(x)

P(x)
≤ 8m2

pikpjk
e−

m
2
δ2ij

for all (r, s), applying Theorem 2.5 and a similar argument to Case (i). Since δ2
ij > 0 for

i 6= j, εrs → 0 as m→∞.
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Case (iii) Now consider the matrix

Aππ − Fπ (2.13)

= E

[{
∂

∂π
log P(x)

}{
∂

∂π
log P(x)

}T]
− Fπ

= E

 1

P2(x)




P1(x)

...

Ps−1(x)

− Ps(x) · 1






P1(x)

...

Ps−1(x)

− Ps(x) · 1



T
−
(
D−1

π + π−1
s 11T

)
.

Pick out the (a, a)th entry which we will denote as εaa. We have

εaa = E

[
[Pa(x)− Ps(x)]2

P2(x)

]
− (π−1

a + π−1
s )

=
∑
x∈Ω

P2
a(x)− 2 Pa(x) Ps(x) + P2

s(x)

P(x)
− (π−1

a + π−1
s )

=
∑
x∈Ω

(
P2
a(x)

P(x)
− Pa(x)

πa

)
+
∑
x∈Ω

(
P2
s(x)

P(x)
− Ps(x)

πs

)
− 2

∑
x∈Ω

Pa(x) Ps(x)

P(x)

=
1

πa

∑
x∈Ω

πa Pa(x)− P(x)

P(x)
Pa(x) +

1

πs

∑
x∈Ω

πs Ps(x)− P(x)

P(x)
Ps(x)− 2

∑
x∈Ω

Pa(x) Ps(x)

P(x)

= − 1

πa

∑
x∈Ω

s∑
` 6=a

π` P`(x) Pa(x)

P(x)
− 1

πs

∑
x∈Ω

s∑
` 6=s

π` P`(x) Ps(x)

P(x)
− 2

πa

∑
x∈Ω

πa Pa(x) Ps(x)

P(x)

Then by the triangle inequality,

|εaa| ≤
2

π2
a

s∑
6̀=a

e−
m
2
δ2`a +

2

π2
s

s∑
`6=s

e−
m
2
δ2`s +

4

πaπs
e−

m
2
δ2as ,

applying Theorem 2.4 to the first two terms, and Corollary 2.5 to the last term. Since

δ2
ij > 0 for i 6= j, we have εaa → 0 for a ∈ {1, . . . , s− 1} as m→∞.
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Case (iv) Consider again the matrix Aππ − Fπ from (2.13), but now the case where

a 6= b. We have

εab = E

[
[Pa(x)− Ps(x)][Pb(x)− Ps(x)]

P2(x)
− π−1

s

]
=
∑
x∈Ω

Pa(x) Pb(x)

P(x)
−
∑
x∈Ω

Pa(x) Ps(x)

P(x)
−
∑
x∈Ω

Pb(x) Ps(x)

P(x)
+
∑
x∈Ω

P2
s(x)

P(x)
− π−1

s .

(2.14)

We can use Corollary 2.5 to handle the first three terms. For the last term, notice that

∑
x∈Ω

P2
s(x)

P(x)
− 1

πs
=
∑
x∈Ω

(
Ps(x)

P(x)
− 1

πs

)
Ps(x) = − 1

πs

∑
x∈Ω

∑
` 6=s

π` P`(x) Ps(x)

P(x)
.

Now, applying the triangle inequality to (2.14),

|εab| ≤
2

πaπb
e−

m
2
δ2ab +

2

πaπs
e−

m
2
δ2as +

2

πbπs
e−

m
2
δ2bs +

2

π2
s

∑
`6=s

e−
m
2
δ2`s

Since δ2
ij > 0 for i 6= j, we have εab → 0 for a 6= b in {1, . . . , s− 1} as m→∞.

Case (v) Finally, consider the following matrix, for j = 1, . . . , s,

AπjDj = E

[{
∂

∂π
logP (x)

}{
∂

∂pj
logP (x)

}T]
Dj

= E

 1

P (x)


P1(x)− Ps(x)

...

Ps−1(x)− Ps(x)

 πjPj(x)

P (x)

(
Djx−k −

xk
pk

1

)T
Dj

= E

πjPj(x)

P 2(x)


P1(x)− Ps(x)

...

Ps−1(x)− Ps(x)


(
x−k −

xk
pk
pj

)T

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whose (a, b)th element is

εab = E

[
πjPj(x)

P 2(x)
(Pa(x)− Ps(x))

(
xb −

xk
pjk

pjb

)]
=
∑
x∈Ω

πjPj(x)

P (x)
(Pa(x)− Ps(x))

(
xb −

xk
pjk

pjb

)
. (2.15)

First suppose that j 6= a and j 6= s. Since |tbpjk − tkpjb| ≤ tbpjk + tkpjb ≤ 2m we have

|εab| ≤
2m

pjk

∑
x∈Ω

πjPj(x)

P (x)
|Pa(x)− Ps(x)|

≤ 2m

pjk

{∑
x∈Ω

πjPj(x)Pa(x)

P (x)
+
∑
x∈Ω

πjPj(x)Ps(x)

P (x)

}

≤ 2m

pjk

{
2

πa
e−

m
2
δ2ja +

2

πs
e−

m
2
δ2js

}
,

using Corollary 2.5. Since δ2
ja > 0 and δ2

js > 0, we have εab →∞ as m→∞.

Now suppose j = a or j = s, and notice that

∑
x∈Ω

(
xb −

xk
pjk

pjb

)
Pj(x) = E

(
Xb −Xk

pjb
pjk

∣∣∣∣ Z = j

)
= 0.

Therefore, the expression for εab in (2.15) is equivalent to

εab =
∑
x∈Ω

[
πjPj(x)

P (x)
(Pa(x)− Ps(x)) + 2Pj(x)

](
xb −

xk
pjk

pjb

)
=
∑
x∈Ω

πjPj(x)

[
Pa(x)− Ps(x)

P (x)
+ 2π−1

j

](
xb −

xk
pjk

pjb

)
,
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and so

εab ≤
2m

pjk

∑
x∈Ω

πjPj(x)

[
Pa(x)− Ps(x)

P (x)
+ 2π−1

j

]

=
2m

pjk

{∑
x∈Ω

πjPj(x)Pa(x)

P (x)
−
∑
x∈Ω

πjPj(x)Ps(x)

P (x)
+ 2π−1

j

}

≤ 2m

pjk

{
2

πa
e−

m
2
δ2ja − 2

πs
e−

m
2
δ2js + 2π−1

j

}

=


2m
pjk

2
πa

exp{−m
2
δ2
ja}, if j = s

2m
pjk

2
πs

exp{−m
2
δ2
js}, if j = a,

applying Corollary 2.5 on the second-to-last line. Similarly,

εab ≥ −
2m

pjk

{
2

πa
e−

m
2
δ2ja − 2

πs
e−

m
2
δ2js + 2π−1

j

}
=


− 2m
pjk

2
πa

exp{−m
2
δ2
ja}, if j = s

− 2m
pjk

2
πs

exp{−m
2
δ2
js}, if j = a.

Therefore for both cases, j = a and j = s, we have that εab → 0 as m→∞.

As an important corollary from the proof of Theorem 2.2, the convergence rate

of the elements of Ĩm(θ) − Im(θ) to zero is of exponential order, but depends on the

closeness between subpopulations. The convergence can be slowed dramatically when

pa and pb are close together for mixture components a 6= b.

Corollary 2.6 (Convergence rates). We have the following rates of convergence for the

elements of I(θ)− Ĩ(θ) as m→∞. Let δ∗ =
∧
a6=b δ

2
ab =

∧
a6=b

[∨k−1
j=1 paj − pbj

]
.

(i) For elements εab of the diagonal blocksAii−πiFi, i = 1, . . . , s, εab = O(m2e−
m
2
δ2∗)

(ii) For elements εab of the off-diagonal blocks Aij , i, j ∈ {1, . . . , s} and i 6= j, εab =

O(m2e−
m
2
δ2∗)

(iii) For diagonal elements εaa of the last diagonal blockAππ − Fπ, εaa = O(e−
m
2
δ2∗)
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(iv) For off-diagonal elements εab, a 6= b, of the last diagonal block Aππ − Fπ, εab =

O(e−
m
2
δ2∗)

(v) For elements εab of the off-diagonal blocksAπj , j = 1, . . . , s, εab = O(me−
m
2
δ2∗)

where i, j ∈ {1, . . . , s}.

The FIM approximation turns out to be equivalent to a complete data FIM, as shown

below in Proposition 2.7, which gives an interesting connection to EM. The matrix Ĩ(θ)

can therefore be formulated for any finite mixture whose components have a well-defined

FIM, and is not limited to the case of multinomials. Denote Discrete(a1, . . . , as;π) as the

discrete distribution taking values a1, . . . , as with corresponding probabilities π1, . . . , πs.

Proposition 2.7. The matrix Ĩ(θ) is equivalent to the FIM of (X, Z), where (X | Z = `) ∼

Multk(p`,m) and Z ∼ Discrete(1, . . . , s;π).

Proof of Proposition 2.7. Here Z represents the population from which X was drawn.

The complete data likelihood is then

L(θ | x, z) =
s∏
`=1

[
π`f(x | p`,m)

]I(z=`)
.

This likelihood leads to the score vectors

∂

∂pa
logL(θ) = ∆a

[
D−1

a x−k −
xk
pak

1

]
,

∂

∂π
logL(θ) = D−1

π ∆−s −
∆s

πs
1,

where ∆ = (∆1, . . . ,∆s) so that ∆` = I(Z = `) and ∆ ∼ Mults(1,π), and ∆−s denotes
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the vector (∆1, . . . ,∆s−1). Taking second derivatives yields

∂2

∂pa∂pTa
logL(θ) = −∆a

[
D−2

a x−k +
xk
p2
ak

11T
]
,

∂2

∂pa∂pTb
logL(θ) = 0, for a 6= b,

∂2

∂pa∂πT
logL(θ) = 0,

∂2

∂π∂πT
logL(θ) = −

[
D−2

π ∆−s +
∆s

π2
s

11T
]
.

Now take the expected value of the negative of each of these terms, jointly with respect

to (X, Z), to obtain the blocks of Ĩ(θ).

Corollary 2.8. Suppose Xi ∼ MultMix(mi,θ), i = 1, . . . , n, is an independent sample

from the mixed population with varying cluster sizes, and M = m1 + · · ·+mn. Then the

approximate FIM with respect to (X1, . . . ,Xn) is given by

Ĩ(θ) = Blockdiag (π1F1, . . . , πsFs,Fπ) ,

where F` = M
[
D−1

` + p−1
`k 11T

]
for ` = 1, . . . , s, and Fπ = n

[
D−1

π + π−1
s 11T

]
.

Proof of Corollary 2.8. Let Ĩmi(θ) represent the FIM approximation with respect to ob-

servationXi. The result is obtained using Ĩ(θ) = Ĩm1(θ) + · · ·+ Ĩmn(θ), corresponding

to the additive property of exact FIMs for independent samples. This additive property

can be justified by noting that each Ĩmi(θ) is a true (complete data) FIM, by Proposi-

tion 2.7.

Since Ĩ(θ) is a block-diagonal matrix, some useful expressions can be obtained in

closed-form.

Corollary 2.9. Let Ĩ(θ) represent the FIM with respect to an independent sample Xi ∼

MultMix(mi,θ), i = 1, . . . , n. Then:
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(a) Ĩ−1(θ) = Blockdiag
(
π−1

1 F
−1
1 , . . . , π−1

s F
−1
s ,F−1

π

)
, where F−1

` = M−1{D` −

p`p
T
` } for ` = 1, . . . , s and F−1

π = n−1{Dπ − ππT}.

(b) tr
(
Ĩ(θ)

)
=
∑s

`=1

∑k−1
j=1 Mπ`

{
p−1
`j + p−1

`k

}
+
∑s−1

`=1 n
{
π−1
` + π−1

s

}
.

(c) det
(
Ĩ(θ)

)
=
(∏s

`=1 p
−1
`k

∏k−1
j=1 Mπ`p

−1
`j

) (
π−1
s

∏s−1
`=1 nπ

−1
`

)
.

Proof of Corollary 2.9. (a) Since Ĩ(θ) is block diagonal, its inverse can be obtained by

inverting the blocks. To find the expressions for the individual blocks, we can apply the

Sherman-Morrison formula (see for example Rao (1965, chapter 1))

(C + uvT )−1 = C−1 − C
−1uvTC−1

1 + vTC−1u
.

For the case of F−1
π , for example, take C = D−1

π , u = π
−1/2
s 1, and v = π

−1/2
s 1T and

use the expressions in Corollary 2.8.

(b) Since the trace of a block diagonal matrix is the sum of the traces of its blocks, we

have

tr
(
Ĩ(θ)

)
= π1 tr (F1) + · · ·+ πs tr (Fs) + tr (Fπ) . (2.16)

The individual traces can be obtained as

tr (F`) = tr
[
M(D−1

` + p−1
`k 11T )

]
=

k−1∑
j=1

M
{
p−1
`j + p−1

`k

}
,

a summation over the diagonal elements. Similarly for the block corresponding to π,

tr (Fπ) = tr
[
n
(
D−1

π + π−1
s 11T

)]
=

s−1∑
`=1

n
{
π−1
` + π−1

s

}
.

The result is obtained by replacing these expressions into (2.16).
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(c) Since Ĩ(θ) has a block diagonal structure,

det Ĩ(θ) = det {Fπ} ×
s∏
`=1

det {π`F`}

=

(
ns−1 det

{
D−1

π + π−1
s 11T

})( s∏
`=1

πk−1
` Mk−1 det

{
D−1

` + p−1
`k 11T

})
(2.17)

Recall the property (see for example Rao (1965, chapter 1)) that for M nonsingular, we

have

det(M + uuT ) =

∣∣∣∣∣∣∣
M −u

uT 1

∣∣∣∣∣∣∣ = det(M)
(
1 + uTM−1u

)
.

This yields, for instance

det
{
D−1

π + π−1
s 11T

}
= det

{
D−1

π

} (
1 + π−1

s 1TDπ1
)

=

[
1 +

1− πs
πs

] s−1∏
`=1

π−1
` = π−1

s

s−1∏
`=1

π−1
` .

The result can be obtained by substituting the simplified determinants into (2.17).

The determinant and trace of the FIM are not utilized in the computation of MLEs,

but are used in the computation of many statistics in subsequent analysis. In such appli-

cations, it may be useful to have a closed-form approximation for these expressions. As

one example, consider the Consistent Akaike Information Criterion with Fisher Informa-

tion (CAICF) formulated in (Bozdogan, 1987). The CAICF is an information-theoretic

criterion for model selection, and is a function of the log-determinant of the FIM.

It can also be shown that I−1
m (θ) − Ĩ−1

m (θ) → 0 as m → ∞, which we now state

as a theorem. This result is perhaps more immediately relevant than Theorem 2.2 for the

scoring technique presented in the following section.

Theorem 2.10. Let Im(θ) and Ĩm(θ) be defined as in Theorem 2.2 (namely the FIM
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and its approximation, with respect to a single observation with cluster size m). Then

I−1
m (θ)− Ĩ−1

m (θ)→ 0 as m→∞.

Proof of Theorem 2.10. This proof uses properties of matrix norms; refer to Lange (2010,

Chapter 6) or Meyer (2001, Chapter 5) for background. Notice that for nonsingular q× q

matricesA andB,

B−1 −A−1 = A−1(A−B)B−1.

Then for any matrix norm satisfying the sub-multiplicative property,

‖A−1 −B−1‖ ≤ ‖A−1‖ · ‖A−B‖ · ‖B−1‖. (2.18)

Fix θ ∈ Θ, take A = Ĩm(θ) and B = Im(θ), and take ‖·‖ to be the Frobenius matrix

norm. Then (2.18) becomes

‖I−1
m (θ)− Ĩ−1(θ)‖F ≤ ‖I−1

m (θ)‖F · ‖Ĩ−1
m (θ)‖F · ‖Im(θ)− Ĩm(θ)‖F ,

where ‖A‖2
F=

∑q
i=1

∑q
j=1 a

2
ij , and aij denote the elements of A. To show that the RHS

converges to 0 as m → ∞, we will handle the three terms separately. Since Im(θ) −

Ĩm(θ)→ 0 as m→∞ by Theorem 2.2, ‖Im(θ)− Ĩm(θ)‖F → 0. Next, we address the

‖Ĩ−1
m (θ)‖F term. Using the explicit form in Corollary 2.9, we have

0 ≤ ‖Ĩ−1
m (θ)‖2

F =
s∑
`=1

‖π−1
` F

−1
` ‖

2
F + ‖F−1

π ‖2
F

=
s∑
`=1

m−2π−2
` ‖D` − p`pT` ‖2

F + ‖Dπ − ππT‖2
F .

All terms beside m−2 are free of m, therefore ‖Ĩ−1
m (θ)‖F is seen to be decreasing in m,

and hence is bounded in m.

We will now consider the term ‖I−1
m (θ)‖, with the 2-norm instead of the Frobenius

norm. Let λ1(m) ≥ · · · ≥ λq(m) be the eigenvalues of Im(θ) for a fixed m, all assumed
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to be positive. Since the 2-norm of a symmetric positive definite matrix is its largest

eigenvalue, we have

0 ≤ ‖I−1
m (θ)‖2 =

1

λq(m)
=

1

min
‖x‖=1

xTIm(θ)x

=
1

min
‖x‖=1

{
xT
[
Im(θ)− Ĩm(θ)

]
x+ xT Ĩm(θ)x

} .
Notice that

min
‖x‖=1

xT
[
Im(θ)− Ĩm(θ)

]
x+ min

‖x‖=1
xT Ĩm(θ)x

≤ min
‖x‖=1

{
xT
[
Im(θ)− Ĩm(θ)

]
x+ xT Ĩm(θ)x

}

since both LHS and RHS are lower bounds for xT
[
Im(θ)− Ĩm(θ)

]
x+xT Ĩm(θ)x, and

the RHS is the greatest such bound. Therefore

1/λq(m) ≤ 1

min
‖x‖=1

xT
[
Im(θ)− Ĩm(θ)

]
x+ min

‖x‖=1
xT Ĩm(θ)x

=
1

βq(m) + λ̃q(m),

denoting the eigenvalues of Ĩm(θ) as λ̃1(m) ≥ · · · ≥ λ̃q(m) (all positive), and the eigen-

values of Im(θ) − Ĩm(θ) as β1(m) ≥ · · · ≥ βq(m). It is well known that the mapping

from a matrix to its eigenvalues is a continuous function of its elements (Meyer, 2001,

Chapter 7). Therefore

Im(θ)− Ĩm(θ)→ 0 as m→∞ =⇒ βq(m)→ 0 as m→∞.

Now for any ε > 0, there exists a positive integer m0 such that |βq(m)| < ε for all
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m ≥ m0, and so we have

0 ≤ ‖I−1
m (θ)‖2 ≤

1

βq(m) + λ̃q(m)
≤ 1

λ̃q(m)− ε
(2.19)

for all m ≥ m0. Because ‖A‖2 ≤ ‖A‖F , and ‖Ĩ−1
m (θ)‖ was seen to be bounded, for all

m there exists a K > 0 such that,

1/λ̃q(m) = ‖Ĩ−1
m (θ)‖2 ≤ ‖Ĩ−1

m (θ)‖F ≤ K ⇐⇒ λ̃q(m) ≥ 1/K.

WLOG assume that ε has been chosen so that λ̃q(m) ≥ 1/K > ε, to avoid division by

zero. The RHS of (2.19) is therefore bounded above by (1/K − ε)−1 for all m ≥ m0,

which implies ‖I−1
m (θ)‖2 is bounded when m ≥ m0.

To conclude the proof, note that in general q−1/2‖A‖F ≤ ‖A‖2, so that

0 ≤ ‖I−1
m (θ)− Ĩ−1

m (θ)‖F

≤ ‖I−1
m (θ)‖F · ‖Ĩ−1

m (θ)‖F · ‖Im(θ)− Ĩm(θ)‖F

≤ √q‖I−1
m (θ)‖2 · ‖Ĩ−1

m (θ)‖F · ‖Im(θ)− Ĩm(θ)‖F .

It follows from the earlier steps that the RHS converges to zero as m→∞, and therefore

‖I−1
m (θ)− Ĩ−1

m (θ)‖F → 0, which implies I−1
m (θ)− Ĩ−1

m (θ)→ 0.

In the next section, we use the FIM approximation obtained in Theorem 2.2 to

define an approximate scoring algorithm and investigate its properties.

2.4 Approximate Scoring Algorithm

Consider an independent sample with varying cluster sizesXi ∼ MultMixk(mi,θ)

for i = 1, . . . , n. Let θ(0) be an initial guess for θ, and S(θ) be the score vector with
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respect to the sample. Then by independence, S(θ) =
∑n

i=1 S(θ;xi), where S(θ;xi) is

the score vector with respect to the ith observation. The exact scoring algorithm is given

by computing the iterations

θ(g+1) = θ(g) + I−1(θ(g))S(θ(g)), g = 1, 2, . . . (2.20)

until the convergence criteria

∣∣logL(θ(g+1))− logL(θ(g))
∣∣ < ε

is met, for some given tolerance ε > 0. In practice, a line search may be used for ev-

ery iteration after determining a search direction, and other convergence criteria may be

considered, but such modifications will not be considered here. Note that (2.20) uses the

exact FIM which may not be easily computable. We propose to substitute the approxi-

mation Ĩ(θ) for I(θ), and will refer to the resulting method as the approximate scoring

algorithm (AFSA). The expressions for Ĩ(θ) and its inverse are available in closed-form,

as seen in Corollaries 2.8 and 2.9.

AFSA can be applied to finite mixture of multinomial models which are not explic-

itly in the form of (2.3). We now give two such examples in which AFSA may be used to

compute MLEs.

Example 2.11. The random-clumped multinomial (RCM) model (Morel and Nagaraj,

1993) is a special case of the finite mixture of multinomials where the mixing proportions

π and the component probability vectors p`, for ` = 1, . . . , s, are functions of a smaller

set of parameters η. The Jacobian of this transformation can be used to write AFSA

iterations in terms of η. This example has also been discussed in the context of AFSA

in (Liu, 2005). Before describing the iterations we will recall some details about the

distribution.

The RCM distribution models overdispersion through “clumped” sampling in the
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multinomial framework. RCM represents an interesting model for exploring computa-

tional methods. Recently Zhou and Lange (2010) have used it as an illustrative example

for the minorization-maximization principle. Raim et al. (2013) have explored parallel

computing in maximum likelihood estimation using large RCM models as a test problem.

It turns out that RCM conforms to the finite mixture of multinomials representation (2.2),

and can therefore be fitted by AFSA. Once the mixture representation is established, the

score vector and FIM approximation can be formulated by the use of transformations;

see for example Lehmann and Casella (1998, Section 2.6). Hence, we can obtain the

algorithm presented in Morel and Nagaraj (1993) and Neerchal and Morel (1998) as an

AFSA-type algorithm.

Consider a cluster ofm trials, where each trial results in one of k possible outcomes

with probabilities π1, . . . , πk. Suppose a default category is also selected at random, so

that each trial either results in this default outcome with probability ρ, or an independent

choice with probability 1 − ρ. Intuitively, if ρ → 0, this scheme approaches a standard

multinomial distribution. An RCM random variable can be obtained from the follow-

ing procedure. Let Y0,Y1, . . . ,Ym
iid∼ Multk(π, 1) and U1, . . . ,Um

iid∼ Uniform(0, 1) be

independent samples, then

X = Y0

m∑
i=1

I(Ui ≤ ρ) +
m∑
i=1

YiI(Ui > ρ)

= Y0N + (Z | N) (2.21)

follows the distribution RCMk(π, ρ). The representation (2.21) emphasizes that N ∼

Binomial(m, ρ), (Z | N) ∼ Multk(π,m −N), and Y0 ∼ Multk(π, 1), where N and Y0

are independent.
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RCM is also a special case of the finite mixture of multinomials, so that

X ∼ f(x;π, ρ) =
k∑
`=1

π`f(x; p`,m),

p` = (1− ρ)π + ρe`, for ` = 1, . . . , k − 1,

pk = (1− ρ)π,

where f(x;p,m) is our usual notation for the density of Multk(p,m). This mixture

representation can be derived using moment generating functions, as shown in (Morel

and Nagaraj, 1993). Notice that in this mixture s = k, so that the number of mixture

components matches the number of categories. There are also only k distinct parameters

rather than sk − 1 as in the general mixture.

The FIM approximation for the RCM model can be obtained by transformation,

starting with the expression for the general mixture. Consider transforming the k dimen-

sional η = (π, ρ) to the q = sk − 1 = (k + 1)(k − 1) dimensional θ = (p1, . . . ,ps,π)

so that

θ(η) =



(1− ρ)π + ρe1

...

(1− ρ)π + ρek−1

(1− ρ)π

π


, yielding

∂θ

∂η
=



(1− ρ)Ik−1 −π + e1

...
...

(1− ρ)Ik−1 −π + ek−1

(1− ρ)Ik−1 −π

Ik−1 0


as the q × k Jacobian of the transformation. Using the relations

S(η) =
∂

∂η
log f(x;θ) =

(
∂θ

∂η

)T
∂

∂θ
log f(x;θ),

I(η) = Var (S(η)) =

(
∂θ

∂η

)T
I(θ)

(
∂θ

∂η

)
,

it is possible to obtain an explicit form of the approximate FIM as stated in (Morel and
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Nagaraj, 1993). The convergence Ĩ(η) − I(η) → 0 as m → ∞ is proved explicitly in

(Morel and Nagaraj, 1991). We then have AFSA iterations for RCM,

η(g+1) = η(g) + Ĩ−1(η(g))S(η(g)), g = 1, 2, . . .

The following example involves a mixture of multinomials where the response

probabilities are functions of covariates. The idea is analogous to the usual multinomial

with logit link, but with links corresponding to each component of the mixture. Again,

the Jacobian of a transformation can be used to formulate AFSA iterations.

Example 2.12. In practice a binomial or multinomial outcome is often studied as a re-

sponse to a covariate. As an example showing how AFSA can be applied to such models,

consider the finite mixture of binomial regressions model (Frühwirth-Schnatter, 2006,

Chapter 9). Suppose Y follows the binomial mixture distribution MultMix2(m,θ) so that

f(y | m,θ) =
s∑
`=1

π`

(
m

y

)
py` (1− p`)

m−y

with θ = (p1, . . . , ps, π1, . . . , πs−1), and a regression

p` = G(xTβ`), x ∈ Rd,

is linked to each mixture component ` = 1, . . . , s through the inverse link function

G(x) = 1/(1 + e−x). Denote ϑ = (β1, . . . ,βs, π1, . . . , πs−1), the parameter of inter-

est in studying the regression of Y on x. AFSA requires the expressions

∂

∂ϑ
log f(y | m,ϑ) =

(
∂θ

∂ϑ

)T
∂

∂θ
log f(y | m,θ) (2.22)
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and

Ĩ(ϑ) =

(
∂θ

∂ϑ

)T
Ĩ(θ)

(
∂θ

∂ϑ

)
, (2.23)

where the expressions for the score and FIM with respect to θ are as given earlier. To

obtain the Jacobian of the transformation ϑ 7→ θ, we have

∂pa
∂βb

=


G′(xTβb)x

T if a = b

0 o.w.

This yields the (2s− 1)× (sd+ s− 1) matrix

∂θ

∂ϑ
=



G′(xTβ1)xT

. . .

G′(xTβs)x
T

0

0 Is−1


,

where Is−1 is the identity matrix of dimension s− 1. AFSA for an independent sample

Yi ∼ MultMix2(mi,θi), θi = (pi1, . . . , pis, π1, . . . , πs−1)

pi` = G(xTi β`), for i = 1, . . . , n and ` = 1, . . . , s,

can be written by summing expressions (2.22) and (2.23) for the score and FIM approxi-

mation over all observations.

Example 2.13. Example 2.12 can be extended to a more complicated regression model

in the multinomial setting. The same transformation technique can be used to obtain

the expressions needed for AFSA. Consider the response Y ∼ MultMixk(m,θ) with

covariates x and w. For each p` vector, ` = 1, . . . , s, assume a generalized logistic
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regression

log
p`j
p`k

= η`j, η`j = xTβ`j,

for j = 1, . . . , k − 1. For π, assume a proportional odds model,

log
π1 + · · ·+ π`
π`+1 + · · ·+ πs

= ηπ` , ηπ` = ν` +wTα,

for ` = 1, . . . , s − 1, taking ηπ0 := −∞ and ηπs := ∞. The unknown parameters are

the vectors α and β`j , and the scalars ν1 < · · · < νs−1. Denote these parameters col-

lectively as ϑ = (β1, . . . ,βs,ν,α) where β` = (β`1, . . . ,β`,k−1) and ν = (ν1, . . . , νs).

Expressions for the θ parameters can be obtained as

p`j =
eη`j

1 +
∑k−1

b=1 e
η`b

and π` =
1

1 + e−η
π
`
− 1

1 + e−η
π
`−1
,

for ` = 1, . . . , s and j = 1, . . . , k − 1. To implement AFSA, a score vector and FIM

approximation are needed. For the score vector we have

∂

∂ϑ
log f(y;θ) =

(
∂θ

∂ϑ

)T
∂

∂θ
log f(y;θ), (2.24)

and the approximate FIM is given by

Ĩ(ϑ) =

(
∂θ

∂ϑ

)T
Ĩ(θ)

(
∂θ

∂ϑ

)
. (2.25)

Finding and expression for the Jacobian is tedious but straightforward. AFSA for an

independent sample

Yi ∼ MultMixk(mi,θi), θi = (pi1, . . . ,pis, π1, . . . , πs−1),

with generalized logit and proportional odds models as above for i = 1, . . . , n, can be
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written by summing the expressions (2.24) and (2.25) for the score and FIM approxima-

tion over all observations.

We have already seen that the FIM approximation is equivalent to a complete data

FIM from EM. There is also an interesting connection between AFSA and EM, stated as

Theorem 2.16, that the iterations are algebraically related. This was first observed by Liu

(2005). Again, we reproduce the details on that issue in this thesis. To see the connec-

tion, explicit forms for AFSA and EM iterations are first presented in Propositions 2.14

and 2.15.

Proposition 2.14 (AFSA Iterations). The AFSA iterations

θ(g+1) = θ(g) + Ĩ−1(θ(g))S(θ(g)), g = 1, 2, . . . (2.26)

can be written explicitly as

π
(g+1)
` = π

(g)
`

1

n

n∑
i=1

P`(xi)

P(xi)
and

p
(g+1)
`j =

1

M

n∑
i=1

P`(xi)

P(xi)
xij − p(g)

`j

[
1− 1

M

n∑
i=1

mi
P`(xi)

P(xi)

]
,

where ` = 1, . . . , s, j = 1, . . . , k, and M = m1 + · · ·+mn.

Proof of Proposition 2.14. The general form for AFSA is given by

θ(g+1) = θ(g) + Blockdiag
(
π1F

−1
1 . . . , πsF

−1
s ,F−1

π

)
S(θ(g))

so that the individual updates are

p
(g+1)
` = p

(g)
` + π−1

` F
−1
`

∂

∂p`
logL(θ(g)), ` = 1, . . . , s

π(g+1) = π(g) + F−1
π

∂

∂π
logL(θ(g)).
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From Corollary 2.9 we have

π(g+1) = π(g) + (nFπ)−1

n∑
i=1

∂ logL(θ(g) | xi)
∂π

= π(g) + n−1
[
Diag{π(g)} − π(g)π(g)T

] n∑
i=1

∂ log(θ(g) | xi)
∂π

.

Then for ` = 1, . . . , s− 1,

π
(g+1)
` = π

(g)
` + n−1π

(g)
`

n∑
i=1

P`(xi)− Ps(xi)

P(xi)
− n−1

n∑
i=1

s−1∑
t=1

π
(g)
` π

(g)
t

Pt(xi)− Ps(xi)

P(xi)

= π
(g)
` + n−1π

(g)
`

n∑
i=1

P`(xi)− Ps(xi)

P(xi)

− n−1π
(g)
`

n∑
i=1

{
P(xi)− π(g)

s Ps(xi)− (1− π(g)
s ) Ps(xi)

P(xi)

}

= π
(g)
` + n−1π

(g)
`

n∑
i=1

P`(xi)− Ps(xi)

P(xi)
− n−1π

(g)
`

n∑
i=1

{
1− Ps(xi)

P(xi)

}
= π

(g)
`

1

n

n∑
i=1

P`(xi)

P(xi)
.

Next, to obtain explicit iterations for p`j’s, the blocks for ` = 1, . . . , s are given by

p
(g+1)
` = p

(g)
` +

(
π

(g)
` F`

)−1
n∑
i=1

∂

∂p`
logL(θ(g) | xi)

= p
(g)
` +

1

Mπ
(g)
`

[
Diag{p(g)

` } − p
(g)
` p

(g)
`

T
] n∑
i=1

∂

∂p`
logL(θ(g) | xi).
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For j = 1, . . . , k − 1,

p
(g+1)
`j = p

(g)
`j +

1

M

n∑
i=1

p
(g)
`j

P`(xi)

P(xi)

(
xij

p
(g)
`j

− xik

p
(g)
`k

)

− 1

M

n∑
i=1

k−1∑
t=1

p
(g)
`j p

(g)
`t

P`(xi)

P(xi)

(
xit

p
(g)
`t

− xik

p
(g)
`k

)

= p
(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)

(
xij −

p
(g)
`j

p
(g)
`k

xik

)

− 1

M

n∑
i=1

p
(g)
`j

P`(xi)

P(xi)

k−1∑
t=1

(
xit −

p
(g)
`t

p
(g)
`k

xik

)
.

= p
(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)

{(
xij −

p
(g)
`j

p
(g)
`k

xik

)
− p(g)

`j

k−1∑
t=1

(
xit −

p
(g)
`t

p
(g)
`k

xik

)}
(2.27)

Since
∑k

t=1 xit = mi and
∑k

t=1 p
(g)
`t = 1,

k−1∑
t=1

(
xit −

p
(g)
`t

p
(g)
`k

xik

)
= (mi − xik)− xik

1− p(g)
`k

p
(g)
`k

= mi − xik/p(g)
`k .

Applying this result to (2.27) and simplifying we get

p
(g+1)
`j = p

(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)

(
xij −mip

(g)
`j

)
= p

(g)
`j +

1

M

n∑
i=1

P`(xi)

P(xi)
xij −

p
(g)
`j

M

n∑
i=1

mi
P`(xi)

P(xi)
.

Proposition 2.15 (EM Iterations). Consider the complete data (Xi, Zi), independent for

i = 1, . . . , n, where Zi ∼ Discrete(1, . . . , s;π) and (Xi | Zi = `) ∼ Multk(p`,mi).

Iterations for an EM algorithm are given by

π
(g+1)
` =

1

n
π

(g)
`

n∑
i=1

P`(xi)

P(xi)
and p

(g+1)
`j =

∑n
i=1 xij

P`(xi)
P(xi)∑n

i=1mi
P`(xi)
P(xi)

,
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for ` = 1, . . . , s and j = 1, . . . , k.

Proof of Proposition 2.15. The complete data likelihood is

L(θ | x, z) =
n∏
i=1

s∏
`=1

[
π`f(xi | p`,mi)

]∆i`

.

where ∆i` = I(zi = `) and (∆i1, . . . ,∆is)
iid∼ Mults(1,π) for i = 1, . . . , n. Then the

corresponding log-likelihood is

logL(θ | x, z) =
n∑
i=1

s∑
`=1

∆i` log
[
π`f(xi | p`,mi)

]
. (2.28)

Since z1, . . . , zn are not observed, we instead use the expected log-likelihood, conditional

on θ = θ(g) and x. First note that

γ
(g)
i` := E

(
∆i` | x1, . . . ,xn,θ

(g)
)

= P(Zi = ` | xi,θ(g))

=
P(Zi = ` | θ(g)) P(xi | Zi = `,θ(g))

f(xi | θ(g),mi)
=

π
(g)
` f(xi | p(g)

` ,mi)∑s
a=1 π

(g)
a f(xi | p(g)

a ,mi)
=
π

(g)
` P`(xi)

P(xi)

is the posterior probability of population `, given xi and the previous iteration. Condi-

tional on this information, the expectation of (2.28) becomes

Q(θ,θ(g)) :=
n∑
i=1

s∑
`=1

γ
(g)
i` log π` +

n∑
i=1

s∑
`=1

γ
(g)
i` log

[
f(xi | p`,mi)

]
.

Now to maximize this expression with respect to each parameter, equate partial derivatives

to zero and solve for the parameter. For π1, . . . , πs−1 we have

0 =
∂

∂πa
Q(θ,θ(g)) =

n∑
i=1

γ
(g)
ia

πa
−

n∑
i=1

γ
(g)
is

πs

⇐⇒ πs

n∑
i=1

γ
(g)
ia = πa

n∑
i=1

γ
(g)
is . (2.29)
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Summing both sides of (2.29) over a = 1, . . . , s we obtain

πs

s∑
a=1

n∑
i=1

γ
(g)
ia =

n∑
i=1

γ
(g)
is ⇐⇒ πsn =

n∑
i=1

γ
(g)
is

⇐⇒ π̂(g+1)
s =

1

n

n∑
i=1

γ
(g)
is

since the posterior probabilities γ(g)
i1 , . . . , γ

(g)
is sum to 1. Replacing this back into (2.29)

yields

π̂(g+1)
a =

π̂
(g+1)
s

∑n
i=1 γ

(g)
ia∑n

i=1 γ
(g)
is

=
1

n

n∑
i=1

γ
(g)
ia .

Similar steps yield the EM iterations for the pab’s. For pab where a = 1, . . . , s and b =

1, . . . , k − 1,

0 =
∂

∂pab
Q(θ,θ(g)) =

n∑
i=1

γ
(g)
ia

(
xib
pab
− xik
pak

)
⇐⇒ pak

n∑
i=1

γ
(g)
ia xib = pab

n∑
i=1

γ
(g)
ia xik. (2.30)

Summing both sides of (2.30) over b = 1, . . . , k we obtain

pak

n∑
i=1

γ
(g)
ia mi =

n∑
i=1

γ
(g)
ia xik ⇐⇒ p̂

(g+1)
ak =

∑n
i=1 xikγ

(g)
ia∑n

i=1 miγ
(g)
ia

since xi1 + · · ·+ xik = mi. Replacing this back into (2.30) yields

p̂
(g+1)
ab = p̂

(g+1)
ak

∑n
i=1 xibγ

(g)
ia∑n

i=1 xikγ
(g)
ia

=

∑n
i=1 xibγ

(g)
ia∑n

i=1miγ
(g)
ia

.

Theorem 2.16. Denote the estimator from EM by θ̂, and the estimator from AFSA by θ̃.

Suppose cluster sizes are equal, so that m1 = · · · = mn = m. If the two algorithms start
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at the gth iteration with θ(g), then for the (g + 1)th iteration,

π̃
(g+1)
` = π̂

(g+1)
` and p̃

(g+1)
`j =

(
π̂

(g+1)
`

π
(g)
`

)
p̂

(g+1)
`j +

(
1− π̂

(g+1)
`

π
(g)
`

)
p

(g)
`j

for ` = 1, . . . , s and j = 1, . . . , k.

Proof of Theorem 2.16. It is immediate from Propositions 2.14 and 2.15 that π̃(g+1)
` =

π̂
(g+1)
` , and that

π̂
(g+1)
`

π
(g)
`

=
1

n

n∑
i=1

P`(xi)

P(xi)
.

Now we have

(
π̂

(g+1)
`

π
(g)
`

)
p̂

(g+1)
`j +

(
1− π̂

(g+1)
`

π
(g)
`

)
p

(g)
`j

=

∑n
i=1 xij

P`(xi)
P(xi)

mn
∑n

i=1
P`(xi)
P(xi)

n∑
i=1

P`(xi)

P(xi)
+ p

(g)
`j

[
1− 1

n

n∑
i=1

P`(xi)

P(xi)

]

=
1

mn

n∑
i=1

P`(xi)

P(xi)
xij + p

(g)
`j

(
1− 1

n

n∑
i=1

P`(xi)

P(xi)

)
= p̃

(g+1)
`j . (2.31)

The AFSA iterate p̃(g+1)
`j can then be seen as a linear combination of the gth iterate

and the (g+1)th step of EM. The coefficient π̂(g+1)
` /π

(g)
` is nonnegative but may be larger

than 1. Therefore p̃(g+1)
`j need not lie strictly between p̂(g+1)

`j and p(g)
`j . Figure 2.1 shows a

plot of p̃(g+1)
`j as the ratio π̂(g+1)

` /π
(g)
` varies. However, suppose that at the gth step the EM

algorithm is close to convergence. Then

π̂
(g+1)
` ≈ π̂

(g)
` ⇐⇒ π̂

(g+1)
`

π̂
(g)
`

≈ 1, for ` = 1, . . . , s.

From (2.31) we will also have

p̃
(g+1)
`j ≈ p̂

(g+1)
`j , for ` = 1, . . . , s, and j = 1, . . . , k.
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0 1

p
(g)
`j

p̂
(g+1)
`j

π̂
(g+1)
` /π

(g)
`

p̃
(g

+
1
)

`j

AFSA step compared to previous iterate and EM step

Figure 2.1: The next AFSA p̃
(g+1)
`j iteration is a linear combination of p̂(g+1)

`j and p(g)
`j ,

which depends on the ratio π̂(g+1)
` /π

(g)
` .

From this point on, AFSA and EM iterations are approximately the same. Hence, in the

vicinity of a solution, AFSA and EM will produce the same estimate. Note that this result

holds for any m, and does not require a large cluster size justification. For the case of

varying cluster sizes m1, . . . ,mn,

π̂
(g+1)
`

π
(g)
`

p̂
(g+1)
`j +

(
1− π̂

(g+1)
`

π
(g)
`

)
p

(g)
`j

=

∑n
i=1 xij

P`(xi)
P(xi)

n
∑n

i=1mi
P`(xi)
P(xi)

n∑
i=1

P`(xi)

P(xi)
+ p

(g)
`j

[
1− 1

n

n∑
i=1

P`(xi)

P(xi)

]
, (2.32)

which does not simplify to p̃(g+1)
`j as in the proof of Theorem 2.16. However, this illus-

trates that EM and AFSA are still closely related. This also suggests an ad hoc revision

to AFSA, letting p̃(g+1)
`j equal (2.32) so that the algebraic relationship to EM would be

maintained as in (2.31) for the balanced case.

A more general connection is known between EM and iterations of the form

θ(g+1) = θ(g) + I−1
c (θ(g))S(θ(g)), g = 1, 2, . . . , (2.33)
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where Ic(θ) is a complete data FIM. Titterington (1984) shows that the two iterations

are approximately equivalent under appropriate regularity conditions. The equivalence is

exact when the complete data likelihood is in an exponential family

L(µ) = exp
{
b(x) + ηT t+ a(η)

}
, η = η(µ), t = t(x),

and µ := E[t(X)] is the parameter of interest. The complete data likelihood for our

multinomial mixture is indeed an exponential family, but the parameter of interest θ is a

transformation of µ rather than µ itself. Therefore the equivalence is approximate, as we

have seen in Theorem 2.16. The justification for AFSA leading to this chapter followed

the historical approach of Blischke (1964), and not from the role of Ĩ(θ) as a complete

data FIM. But the relationship between EM and the iterations (2.33) suggests that ap-

proximate scoring — that is, scoring with a complete data information matrix — is a

reasonable approach for missing data problems beyond the finite mixture of multinomials

setting.

2.5 Simulation Studies

The main result stated in Theorem 2.2 allows us to approximate the matrix I(θ)

by Ĩ(θ), which is much more easily computed. Theorem 2.10 justifies Ĩ−1(θ) as an

approximation for the inverse FIM. In the present section, simulation studies investigate

the quality of the two approximations as a function of m. We also present studies to

demonstrate the convergence speed and solution quality of AFSA.
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2.5.1 Distance Between True and Approximate FIM

Consider two concepts of distance to compare the closeness of the exact and ap-

proximate matrices. Based on the Frobenius norm ‖A‖2
F =

∑
i

∑
j a

2
ij , a distance metric

dF (A,B) = ‖A−B‖F

can be constructed using the sum of squared differences of corresponding elements. This

distance will be larger in general when the magnitudes of the elements are larger, so we

will also consider a scaled version

dS(A,B) =
dF (A,B)

‖B‖F
=

√∑
i

∑
j(aij − bij)2∑
i

∑
j b

2
ij

,

noting that this is not a true distance metric since it is not symmetric. Using these two

metrics, we compare the distance between true and approximate FIMs, and also the dis-

tance between their inverses. Consider a mixture MultMix2(m,θ) of three binomials,

with parameters

p = (1/7, 1/3, 2/3) and π = (1/6, 2/6, 3/6).

Figure 2.2 plots the two distance types for both the FIM and inverse FIM as m varies.

Note that distances are plotted on a log scale, so the vertical axis represents changes in

orders of magnitude. To see more concretely what is being compared, for the moderate
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cluster size m = 20 we have



27.222 0 0 0 0

0 30 0 0 0

0 0 45 0 0

0 0 0 8 2

0 0 0 2 5


vs.



14.346 −2.453 −0.184 −3.341 1.625

−2.453 12.605 −6.749 −4.440 −0.944

−0.184 −6.749 34.175 −1.205 −2.914

−3.341 −4.440 −1.205 6.022 2.536

1.625 −0.944 −2.914 2.536 3.621


for the approximate and exact FIMs respectively, and



0.037 0 0 0 0

0 0.033 0 0 0

0 0 0.022 0 0

0 0 0 0.139 −0.056

0 0 0 −0.056 0.222


vs.



0.216 0.160 0.020 0.366 −0.295

0.160 0.251 0.043 0.383 −0.240

0.020 0.043 0.040 0.053 −0.003

0.366 0.383 0.053 0.953 −0.690

−0.295 −0.240 −0.003 −0.690 0.827


for the approximate and exact inverse FIMs. Since the approximations are block-diagonal

matrices they have no way of capturing the off-diagonal blocks, which are present in the

exact matrices but are eventually dominated by the block-diagonal elements as m → ∞.

This emphasizes one obvious disadvantage of the FIM approximation, which is that it

cannot be used to estimate all asymptotic covariances for the MLEs for a fixed cluster

size. For this m = 20 case, the block-diagonal elements for both pairs of matrices are not

very close, although they are at least the same order of magnitude with the same signs.

The magnitudes of elements in the inverse FIMs are in general much smaller than those
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in the FIMs, so the unscaled distance will naturally be smaller between the inverses.

Now in Figure 2.2 consider the distance dF (Ĩ(θ), I(θ)) as m is varied. For the

FIM, the distance appears to be moderate at first, then increasing with m, and finally be-

ginning to vanish as m becomes large. What is not reflected here is that the magnitudes

of the elements themselves are increasing; this is inflating the distance until the conver-

gence of Theorem 2.2 begins to kick in. Considering the scaled distance dS(Ĩ(θ), I(θ))

helps to suppress the effect of the element magnitudes and gives a clearer picture of the

convergence.

Focusing next on the inverse FIM, consider the distance dF (Ĩ−1(θ), I−1(θ)). For

m < 5 the exact FIM is computationally singular, so its inverse cannot be computed.

Note that in this case the conditions for identifiability are not satisfied (see the supple-

ment). This is not just a coincidence; there is a known relationship between model non-

identifiability and singularity of the FIM (Rothenberg, 1971). For m between 5 and about

23, the distance is very large at first because of near-singularity of the FIM, but quickly

returns to a reasonable magnitude. As m increases further, the distance quickly vanishes

toward zero. We also consider the scaled distance dS(Ĩ−1(θ), I−1(θ)). Again, this helps

to remove the effects of the element magnitudes, which are becoming very small as m

increases. Even after taking into account the scale of the elements, the distance between

the inverse matrices appears in Figure 2.2 to be converging more quickly in comparison

to the distance between the FIM and its approximation. This may be interesting from

an inference perspective since the inverse of the FIM corresponds to the asymptotic co-

variance. For small to medium cluster sizes, neither the approximate FIM nor its inverse

appear to be very close to the exact matrices.

2.5.2 Approximations to Wald and Score Test Statistics

In the previous section, we saw that the inverse FIM and the inverse approximation

appeared to be converging together more quickly than the FIM and the approximation.
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Figure 2.2: Distance between exact and approximate FIM and its inverse, as m is varied.

The following illustrates the use of the approximation and inverse approximation in infer-

ence. The Wald statistic for testing H0 : θ = θ0 is

Wn(θ̂) = (θ̂ − θ0)TI(θ̂)(θ̂ − θ0),

and the score statistic is

Rn(θ0) = [S(θ0)]T [I(θ0)]−1[S(θ0)],

The usual large sample result gives that Wn(θ̂)
L→ χ2

q and Rn(θ0)
L→ χ2

q as n → ∞,

where q = sk − 1. In addition to carrying out the hypothesis test, the Wald statistic can

be used to construct a large sample 1− α level confidence region

{
θ0 : (θ̂ − θ0)TI(θ̂)(θ̂ − θ0) ≤ χ2

q,α

}
, (2.34)

an ellipsoid in Rq centered at the MLE θ̂, with shape determined by the FIM. Similarly,

the score test statistic can be used to construct the large sample 1 − α level confidence
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region

{
θ0 : [S(θ0)]T [Ĩ(θ0)]−1[S(θ0)] ≤ χ2

q,α

}
. (2.35)

Consider replacing I(θ̂) with the approximate FIM, yielding approximated test statistics

W̃n(θ̂) = (θ̂ − θ0)T Ĩ(θ̂)(θ̂ − θ0). and R̃n(θ̂) = [S(θ0)]T [Ĩ(θ0)]−1[S(θ0)]. Both of

the approximated statistics are more easily computed than their exact counterparts based

on the exact information matrix. We now compare the distributions of the exact and

approximated statistics by simulation. Observations are drawn from the three-component

binomial mixture with

(p1, p2, p3) =

(
1

7
,
1

3
,
2

3

)
and π =

(
1

6
,
2

6
,
3

6

)
.

Samples were drawn from this mixture 200 times for several m and n. For each sample

we compute the four statistics, and hence obtained their empirical distributions under H0

using the 200 samples. Figure 2.3 compares the exact and approximated Wald statistics

using m ∈ {50, 100} and n ∈ {10, 20, 50, 100, 120}. Figure 2.4 compares the exact

and approximated Score statistics at the same sample sizes. In each plot, the limiting χ2
5

cumulative distribution function (CDF) is shown for reference. We can see that even for a

fairly large number of trials m = 50, the CDF of W̃n is much further away from the target

χ2
q distribution than that of Wn even for the largest sample size n = 150. The situation

under m = 100 is improved, and W̃n under n = 150 is close to χ2
q . On the other hand,

the statistic R̃n is close to the target χ2
q even for m = 50 under the smaller sample sizes.

This may be expected based on the study in Section 2.5.1, where the inverse FIM and its

approximation seemed to be converging together faster than Im(θ) and Ĩm(θ).

61



0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF of Wald Statistic w/ Approx FIM

x

F
n(x

)

Sample Size

n = 10
n = 20
n = 50
n = 100
n = 150
chisq, df = 5

(a) Approximated Wald statistic, m = 50.
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(c) Approximated Wald statistic, m = 100.
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(d) Exact Wald statistic, m = 100.

Figure 2.3: Empirical CDF of approximated and exact Wald test statistics.
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(a) Approximated Score statistic, m = 50.
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(c) Approximated Score statistic, m = 100.
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(d) Exact Score statistic, m = 100.

Figure 2.4: Empirical CDF of approximated and exact Score test statistics.
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2.5.3 Effectiveness of AFSA method: Convergence Speed

We first observe the convergence speed of AFSA and several of its competitors.

Consider the mixture of two trinomials

Yi
iid∼ MultMix3(m = 20,θ), i = 1, . . . , n = 500

p1 = (1/3, 1/3, 1/3), p2 = (0.1, 0.3, 0.6), π = 0.75.

We now apply AFSA, FSA, and EM to a single randomly generated dataset using the

same initial value θ(0). This allows for a simple comparison between the algorithms.

Of course, the exact behavior of the algorithms will vary depending on the sample; the

behavior over many samples is studied in Section 2.5.4. Figure 2.5 shows the expected

counts for n = 500 observations in each of the two subpopulations while Figure 2.6 shows

the particular sample we have drawn from the mixture. The sample displays evidence of

two visually distinguishable modes which correspond to the two subpopulations plotted

in Figures 2.5a and 2.5b. A larger proportion of observations belong to the first mode, as

expected, since π = 0.75. After the gth iteration of any of the algorithms, the quantity

δ(g) = logL(θ(g))− logL(θ(g−1))

is measured. The sequence log |δ(g)| is plotted for each algorithm in Figure 2.7. Note that

δ(g) may be negative, except for example in EM which guarantees an improvement to the

log-likelihood in every step. A negative δ(g) can be interpreted as negative progress, at

least from a local maximum. The absolute value is taken to make plotting possible on

the log scale, but some steps with negative progress have been obscured. The resulting

estimates and standard errors for all algorithms are shown in Table 2.1, and additional

summary information is shown in Table 2.2.

We see that AFSA and EM have almost exactly the same rate of convergence toward
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the same solution, as suggested by Theorem 2.16. FSA had severe problems, and was not

able to converge within 100 iterations; i.e. δ(g) < 10−8 was not attained. The situation

for FSA is worse than it appears in the plot; although log |δ(g)| is becoming small, FSA’s

steps result in both positive and negative δ(g)’s until the iteration limit is reached. This

indicates a failure to approach any maximum of the log-likelihood.

We also consider an FSA hybrid with a “warmup period”, where for a given ε0 > 0

the FIM approximation is used until the first time δ(g) < ε0 is crossed. Notice that ε0 =∞

corresponds to “no warmup period”. After the warmup period, exact scoring iterations

are used until the final convergence criterion δ(g) < ε is reached. A similar idea has

been considered by Neerchal and Morel (2005), who proposed a two-stage procedure for

AFSA in the RCM setting of Example 2.11. The first stage consisted of running AFSA

iterations until convergence, and in the second stage one additional iteration of exact

scoring was performed. The purpose of the FSA iteration was to improve standard error

estimates, which were previously found to be inaccurate when computed directly from

the FIM approximation (Neerchal and Morel, 1998). Here we note that FSA also offers a

faster convergence rate than AFSA, given an initial path to a solution. Therefore, AFSA

can be used in early iterations to move to the vicinity of a solution, then a switch to FSA

will give an accelerated convergence to the solution. This approach depends on the exact

FIM being feasible to compute, so the sample space cannot be too large to make use of

the naive summation (2.4). Hence, there is a trade-off in the choice of ε0 between energy

spent on computing the exact FIM for FSA, and a larger number of iterations required

for AFSA. Figure 2.7 shows that the hybrid strategy is effective, addressing the erratic

behavior of FSA from an arbitrary starting value and the slower convergence rates of EM

and AFSA. Table 2.2 shows that even a very limited warmup period such as that allowed

by ε0 = 10 can give a good result.

The Newton-Raphson algorithm, which has not been discussed, performed simi-

larly to exact scoring but has issues with singularity of the Hessian in some samples.
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Figure 2.5: Expected counts, rounded to the nearest integer, for n = 500 observations
sampled independently from each of the two subpopulations. Counts rounded to zero are
not shown.

Table 2.1: Estimates (and standard errors in parentheses) for the competing algorithms.
FSA Hybrid produced similar results with ε0 set to 0.001, 0.01, 0.1, 1, and 10.

FSA AFSA EM FSA Hybrid
p̂11 0.2744 (0.0045) 0.3282 (0.0054) 0.3282 (NA) 0.3282 (0.0062)
p̂12 0.3189 (0.0047) 0.3325 (0.0054) 0.3325 (NA) 0.3325 (0.0056)
p̂21 0.0804 (0.0882) 0.1006 (0.0062) 0.1006 (NA) 0.1006 (0.0087)
p̂22 0.9193 (0.0886) 0.2749 (0.0092) 0.2749 (NA) 0.2749 (0.0106)
π̂ 0.9990 (0.0014) 0.7637 (0.0190) 0.7381 (NA) 0.7381 (0.0247)

Standard errors for AFSA were obtained as
√
a11, . . . ,

√
aqq, denoting Ĩ−1(θ̂) = ((aij)).

For FSA and FSA-Hybrid, the inverse of the exact FIM was used instead. The basic EM

algorithm does not yield standard error estimates. Several extensions have been proposed

to address this, such as by Louis (1982) and Meng and Rubin (1991). In light of Theo-

rem 2.16, standard errors from Ĩ−1(θ) evaluated at EM estimates could also be used to

obtain similar results to AFSA.

2.5.4 Effectiveness of AFSA method: Monte Carlo Study

We next consider a Monte Carlo study of the difference between AFSA and EM

estimators to assess the behavior of AFSA over a large number of samples. EM is con-
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Table 2.2: Convergence of several competing algorithms. Hybrid FSA is shown with
several choices of the warmup tolerance ε0. Exact FSA corresponds to ε0 =∞. Note that
a maximum of 100 iterations was allowed in each case.

Method ε0 LogLik Tol Iter
AFSA — -2247.834 7.99× 10−09 38
EM — -2247.834 9.26× 10−09 38
FSA ∞ -2424.330 −4.04× 10−07 100
FSA 10 -2247.834 3.46× 10−09 15
FSA 1 -2247.834 1.44× 10−09 20
FSA 0.1 -2247.834 1.08× 10−10 23
FSA 0.01 -2247.834 1.43× 10−09 25
FSA 0.001 -2247.834 1.28× 10−10 28
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sidered to produce reliable estimates, hence it is desired to achieve solutions close to EM

with high probability. Observations were generated from

Yi
ind∼ MultMixk(mi,θ), i = 1, . . . , n = 500,

given varying cluster sizes m1, . . . ,mn which themselves were generated as

Z1, . . . , Zn
iid∼ Gamma(α, β), mi = dZie.

Several different settings of θ are considered, with s = 2 mixing components and pro-

portion π = 0.75 for the first component. The parameters α and β were chosen such that

E(Zi) = αβ = 20. This gives β = 20/α so that only α is free, and Var(Zi) = αβ2 =

400/α can be chosen as desired. The expectation and variance ofmi are intuitively similar

to Zi, and their exact values may be computed numerically.

Once the n observations are generated, an AFSA estimator θ̃ and an EM estimator

θ̂ are fit. This process is repeated 1000 times yielding θ̃(r) and θ̂(r) for r = 1, . . . , 1000.

A default initial value was selected for each setting of θ and is used for both algorithms

in every repetition. To measure the closeness of the two estimators,

D̄ =
1

1000

1000∑
r=1

Dr, where Dr =

q∨
j=1

∣∣∣∣∣ θ̃
(r)
j − θ̂

(r)
j

θ̃
(r)
j

∣∣∣∣∣
is the maximum relative difference taken over all components of θ, averaged over all

repetitions. Here
∨

represents the “maximum” operator. Notice that obtaining a good

result for D̄ depends on the vectors θ̂ and θ̃ being ordered in the same way. To help

ensure this, we add the constraint π1 > · · · > πs, which is enforced in both algorithms by

reordering the estimates for π1, . . . , πs and p1, . . . ,ps accordingly after every iteration.

Table 2.3 shows the results of the simulation. Nine different scenarios for θ are consid-

ered. The cluster sizes m1, . . . ,mn are selected in three different ways: a balanced case
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where mi = 20 for i = 1, . . . , n, cluster sizes selected at random with small variability

(using α = 100), and cluster sizes selected at random with moderate variability (using

α = 25). As seen in Section 2.5.1, clusters sizes on the order of m = 20 may not provide

a high accuracy of the FIM approximation to the exact FIM, but are adequate here for

AFSA.

Both AFSA and EM are susceptible to finding local maxima of the likelihood, as are

all iterative optimization procedures, but in this experiment AFSA encountered the prob-

lem much more frequently. These cases stood out because the local maxima occurred with

one of the mixing proportions or category probabilities close to zero, i.e. a convergence

to the boundary of the parameter space. This is especially apparent in our Monte Carlo

statistic D̄, which can become very large if this occurs even once for a given scenario. The

problem occurred most frequently for the case p1 = (0.1, 0.3) and p2 = (1/3, 1/3). To

counter this, we restarted AFSA with a random starting value whenever a solution with

any estimate less than 0.01 was obtained. For this experiment, no more than 15 out of

1000 samples required a restart, and no more than two restarts were needed for the same

sample. In practice, we recommend starting AFSA with several initial values to ensure

that any solutions on the boundary are not missteps taken by the algorithm.

The entries in Table 2.3 show that small to moderate variation of the cluster sizes

does not have a significant impact on the equivalence of AFSA and EM. On the other

hand, as p1 and p2 are moved closer together, the quantity D̄ tends to become larger.

Theorem 2.2 depends on the distinctness of the category probability vectors, so the quality

of the FIM approximation at moderate cluster sizes may begin to suffer in this case. The

estimation problem itself also intuitively becomes more difficult as p1 and p2 become

closer. Although the D̄ value in the three columns for Scenario E are on the order 10−3,

they are reduced to the order 10−6 upon removal of one one large outlier in each case; see

Figure 2.8. Recall that the dimension of pi is k − 1; it can be seen from Table 2.3 that

increasing k from 2 to 4 does not necessarily have a negative effect on the results.
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Table 2.3: Closeness between AFSA and EM estimates, over 1000 samples. Scenarios
A–D represent binomial mixtures, E–G represent trinomial mixtures, and H-I represent
multinomial mixtures with k = 4 categories. V(mi) is shorthand for the variance of mi.

(kth probability not shown) All mi equal α = 100 α = 25
p1 p2 mi = 20 V(mi) ≈ 4.083 V(mi) ≈ 16.083

A.
(
0.1
) (

0.5
)

2.178× 10−6 2.019× 10−6 2.080× 10−6

B.
(
0.3
) (

0.5
)

4.073× 10−5 3.501× 10−5 3.890× 10−5

C.
(
0.35

) (
0.5
)

8.683× 10−4 2.625× 10−4 2.738× 10−4

D.
(
0.4
) (

0.5
)

9.954× 10−3 6.206× 10−2 6.563× 10−2

E.
(
0.1, 0.3

) (
1/3, 1/3

)
1.342× 10−3 1.009× 10−3 1.878× 10−3

F.
(
0.1, 0.5

) (
1/3, 1/3

)
1.408× 10−6 1.338× 10−6 1.334× 10−6

G.
(
0.3, 0.5

) (
1/3, 1/3

)
3.884× 10−6 3.943× 10−6 3.885× 10−6

H.
(
0.1, 0.1, 0.3

) (
0.25, 0.25, 0.25

)
8.389× 10−7 8.251× 10−7 8.440× 10−7

I.
(
0.1, 0.2, 0.3

) (
0.25, 0.25, 0.25

)
1.523× 10−6 1.472× 10−6 1.408× 10−6

Table 2.4 shows the results of a follow-up study to compare the convergence be-

havior of AFSA and EM over a large number of samples, as cluster size and separation

between mixture components are varied. Here we consider the mixture of two binomials,

where p2 = 0.5 is fixed and p1 varies in scenarios A–D which match to Table 2.3, and

a common m is used for all observations. For each setting of m and p1, 1000 samples

were generated, and AFSA and EM were applied in turn to each sample. As expected, the

number of iterations required for convergence is similar for both algorithms, and more

iterations are required to find a suitable solution when |p2 − p1| is small or when m is

small.

2.6 Conclusions

A large cluster approximation was presented for the FIM of the multinomial finite

mixture in Theorem 2.2, which has been proposed in (Morel and Nagaraj, 1991) and fur-

ther studied in (Liu, 2005). This matrix has a convenient block-diagonal form where each

non-zero block is the FIM of a standard multinomial observation. We observed that the

approximation is equivalent to a complete data FIM, had the subpopulation label been

recorded for each observation; this was stated as Proposition 2.7. Using this approxima-
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Table 2.4: Convergence characteristics of AFSA and EM over 1000 samples. Here p2 =
0.5 is fixed. The reported quantity is the average number of algorithm iterations per
sample. Note that the tolerance for convergence was set to 10−8 and a maximum of 1000
iterations was allowed for each algorithm per sample.

m = 20 m = 50 m = 100
p1 AFSA EM AFSA EM AFSA EM

A. 0.1 12.60 12.64 6.13 5.58 4.41 3.32
B. 0.3 142.79 142.67 30.37 30.51 12.20 12.24
C. 0.35 ∗435.90 ∗435.62 77.85 77.55 25.98 25.72
D. 0.4 ∗795.36 ∗796.15 ∗348.55 ∗345.50 84.67 82.93

∗Results for some samples failed to converge within the allowed number of iterations. For the
case (D, m = 20), this occurred with AFSA in 576 samples and with EM in 579 samples. For (C,
m = 20), both algorithms failed to converge in 74 samples, while (D, m = 50) resulted in both
algorithms failing to converge 31 samples.

●

●●●●●●●

●

●

●
●
●

●

●

●

●●●●●

●

●●●●●

●

●●●
●
●
●
●●

●
●●

●

●

●●●

●

●
●
●

●●●●●●●●

●

●●●

●

●
●

●

●●

●●

●●●

●

●

●●

●●●

●

●●●●●●●
●●
●

●●●●●●
●
●●●
●
●●●●

●

●
●
●●

●
●

●

●

●

●
●

●
●
●●●●●

●

●●

●

●●●●

●

●●
●
●

●

●●●●●
●

●

●●●●●

●

●●

●

●

●

●●
●●●

●
●

●●●
●
●

●●●●●●●●●●

●

●●●●●●●●●●●
●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●

●

●●●
●
●●●●●

●

●●●●●

●

●

●

●●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●●●

●

●

●

●

●●

●

●

●

●●●●
●
●

●

●

●
●●

●

●

●
●●

●

●●
●
●

●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●●●●●
●
●●

●

●

●

●

●

●
●●●

●

●●●

●

●

●
●
●

●

●

●●●●●●

●

●●●

●
●

●

●

●

●●●●●●●

●
●

●

●

●
●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●
●

●

●

●

●

●

m=20 α=100 α=25 m=20 α=100 α=25

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Relative Distances Between EM and AFSA
for Scenarios D and E

Scenario D Scenario E

Figure 2.8: Boxplots for Scenarios D and E of the Monte Carlo study presented in Ta-
ble 2.3. At this scale, the boxes appear as thin horizontal lines.
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tion to the FIM, one can formulate an approximate scoring algorithm (AFSA). As first

seen in (Liu, 2005), AFSA iterations are closely related to the well-known Expectation-

Maximization (EM) algorithm for finite mixtures (Theorem 2.16). Simulations show that,

although large cluster sizes are needed before the exact and approximate FIM are close,

the approximation is quite effective in obtaining estimates through AFSA. However, for

standard error computations and ensuing inference, it is advisable to use the exact FIM,

especially for small to moderate cluster sizes.

We have seen that AFSA (and also EM) has an advantage, in terms of robustness

to initial values, over the more standard Fisher scoring and Newton-Raphson algorithms.

This comes at the cost of a slower convergence rate. For Newton-Raphson iterations, the

invertibility of the Hessian depends on the sample, in addition to the current iterate θ(g)

and the model. Fisher scoring iterations can be computed when the cluster size is not

too small (ensuring that the FIM is nonsingular), but may converge to a poor solution

or be unable to make progress at all using an arbitrarily chosen starting point. On the

other hand, Fisher scoring converges very quickly given a sufficiently good starting point.

Therefore, we recommend a hybrid approach: use AFSA iterations for an initial warmup

period, then switch to exact scoring once a path toward a solution has been established.

Although AFSA and EM are closely related and often tend toward the same solu-

tion, AFSA is not necessarily restricted to the parameter space of the problem. AFSA

also tended to converge to the boundary of the space more often than EM. These issues

are not specific to AFSA; Newton-type iterations in general are prone to them without

additional precautions. For the simulations in this work, we have simply restarted AFSA

with a different initial value if it left the space or converged to the boundary. It is rec-

ommended to try several initial values in practice and check the solutions; this not only

avoids selecting poor solutions on the boundary, but also improves the chance of finding

a global maximum. Other measures could be considered as well, such as manipulating

the step size at each iteration or reparameterizing the problem so that the parameter space
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is Rq. These heuristics may be preferred to more complicated algorithms for constrained

optimization.

AFSA may be preferable to EM in situations where it is more natural to formulate.

Derivation of the E-step conditional log-likelihood may involve evaluating a complicated

expectation, but this is not required for AFSA. On the other hand, AFSA requires the

score vector for the observed data; this may involve a messy differentiation but is ar-

guably easier to address numerically than the E-step. AFSA can be formulated for special

finite mixtures of multinomials, such as the random-clumped multinomial from Exam-

ple 2.11 and the mixture with linked regressions from Example 2.13, using Jacobians of

appropriate transformations.

It is interesting to note the relationship between FSA, AFSA, and EM as Newton-

type algorithms. Fisher scoring is a classic algorithm where the Hessian is replaced by its

expectation. In AFSA, the Hessian is replaced instead by a complete data FIM. EM can

be considered a Newton-type algorithm also, where the entire likelihood is replaced by a

complete data likelihood with missing data integrated out. It is in this light that EM and

AFSA iterations are seen to be approximately equivalent. Because the AFSA approach

is equivalent to scoring with a complete data FIM, the technique can be applied to other

finite mixture models and other missing data problems, just as EM.

In this chapter, convergence between the complete data FIM and exact FIM has

only been established for binomial and multinomial mixtures and is obtained by letting

the number of trials m tend to infinity. Chapter 3 extends this result to exponential family

mixtures, but this must be done in such a way that there are still m “trials” within each

observation. It is also desirable to find a small cluster correction that could be applied

to improve the approximation. Although not addressed in this thesis, this might allow

standard errors and confidence regions, such as those discussed in Section 2.5.2, to be

reliably computed from the FIM approximation.
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Chapter 3

Large Cluster Approximation to the Information

Matrix under Exponential Family Finite Mixtures

3.1 Introduction

In this chapter, we consider approximation to the Fisher information matrix (FIM)

for exponential family finite mixtures. Obtaining a simple closed form for this informa-

tion matrix is generally not possible. A computationally convenient approximation may

be useful in frequentist estimation (e.g. the scoring algorithm), in inference (e.g. comput-

ing standard errors and confidence intervals), as well as numerous other applications in

which the information matrix is used. In Chapter 2 it was seen empirically that scoring

may not require a highly accurate approximation to work well. On the other hand, infer-

ence procedures such as Wald and Score confidence intervals may require a high accuracy

to produce results close to those based on the exact information matrix. Therefore, it is

important in general to study the closeness between the proposed approximation and the

exact matrix.

In Chapter 2, we considered an approximate information matrix which was orig-

inally proposed in (Blischke, 1962, 1964) for the finite mixture of binomials, and later

extended to finite mixture of multinomials by Morel and Nagaraj (1993) and Liu (2005).

We saw that it was, in fact, a complete data matrix with respect to the latent subpopula-

tion indicator. The approximation and the true FIM are seen to converge together as the

number of multinomial trials are increased. Furthermore, the approximation is useful in

74



estimation by scoring. This chapter extends the matrix approximation to finite mixtures

of exponential family densities. Such a result allows the idea of approximate information

to be extended outside the scope of multinomial data analysis. We consider a special

clustered sampling scheme; suppose that m observations are sampled from one of s sub-

populations. It is unknown to which subpopulation the observations belong, as in the

usual finite mixture, but it is known that they share a common subpopulation. This pro-

vides an analogue to the trials of a binomial or multinomial experiment, and allows us to

formulate convergence of the approximate information matrix in a similar way.

The proof of convergence in the present setting is very different than the one used

in the multinomial setting (Morel and Nagaraj, 1991; Liu, 2005). The multinomial proof

is based on bounds for tail probabilities of binomial random variables and that the sample

space is bounded. The proof in the present chapter exploits the exponential family form

and does not require restrictions on the sample space. It is shown that the approximate

and exact information matrices converge together as m → ∞, and the convergence is

exponential in m. However, the exponent includes a term which depends on the distance

between subpopulations so that the convergence is very slow when the subpopulations

are similar and very fast when they are not. Therefore, the approximation is most suitable

when the mixed subpopulations are more distinct and m is large.

The rest of this chapter proceeds as follows. Section 3.2 provides the setup and

notation needed for the rest of the chapter. Section 3.3 proves the convergence of the

approximate information matrix, as well as providing rates of convergence. Section 3.4

shows an interesting connection between the convergence rate and the theoretical proba-

bility of misclassification among the s subpopulations using an optimal classification rule.

Section 3.5 provides several examples of the convergence. Finally, Section 3.6 concludes

the chapter.
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3.2 Preliminaries

Suppose a population consists of s subpopulations, and that the `th subpopulation

occurs with proportion π`, for ` = 1, . . . , s. Let Z ∼ Discrete(1, . . . , s; π1, . . . , πs) be

the result of drawing one of the populations at random; that is, Z = ` with probability

π` for ` = 1, . . . , s. Consider drawing an independent and identically distributed sample

X1, . . . ,Xm from the `th subpopulation, whereXj are d-dimensional random variables.

We will suppose an exponential family density forXi in the form

f(x | φ`) = exp
{
b(x) + η(φ`)

Tu(x) + a(η(φ`))
}
,

with respect to a dominating measure (say) λ common to ` = 1, . . . , s, which can be

written in terms of the natural parameter η` as

f(x | η`) = exp
{
b(x) + ηT` u(x) + a(η`)

}
.

The quantity U(X) is the sufficient statistic in this formulation, assumed to be a vector

of dimension k. The subpopulation densities f(x | η`), for ` = 1, . . . , s, are members of

the exponential family F = {f(· | η) : η ∈ Ξ}. We will assume Ξ is an open convex

set in Rk so that the F is an exponential family of full rank, and derivatives of the density

may be taken at any η ∈ Ξ. These assumptions ensure important regularity conditions

in the theory of Fisher information which are discussed in (Shao, 2008, Section 3.1) and

(Lehmann and Casella, 1998, Section 2.5), yet also cover a wide range of practically used

densities. The joint density ofX1, . . . ,Xm conditional on selecting subpopulation Z = `

can be written as

f(x1, . . . ,xm | η`) = exp

{
m∑
i=1

b(xi) + ηT`

m∑
i=1

ui +ma(η`)

}
,
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so that unconditionally,

f(x1, . . . ,xm | θ) =
s∑
`=1

π` exp

{
m∑
i=1

b(xi) + ηT`

m∑
i=1

ui +ma(η`)

}
,

where θ = (η1, . . . ,ηs, π1, . . . , πs−1). By Lemma 2.7.2 of Lehmann and Romano (2005),

the density of T =
∑m

i=1Ui conditional on the subpopulation Z = ` can be written as

f(t | η`) = exp
{
ηT` t+ma(η`)

}
with respect to some dominating σ-finite measure ν. Therefore, unconditionally,

f(t | θ) =
s∑
`=1

π` exp
{
ηT` t+ma(η`)

}
(3.1)

with respect to the same dominating measure. We will use the notation Ω to refer to the

abstract sample space with a typical element ω, and T to refer to the space of T (ω). The

score vectors can be obtained by noting that

log f(t | η) = ηT t+ma(η),

and therefore

∂

∂η
log f(t | η) = t+m

∂

∂η
a(η),= t− E(T ),
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and

∂

∂η`
log f(t | θ) =

∂
∂η`
f(t | θ)

f(t | θ)

=
π`

∂
∂η`
f(t | η`)

f(t | θ)

=
π`f(t | η`)
f(t | θ)

∂

∂η`
log f(t | η`)

=
π`f(t | η`)
f(t | θ)

[t− E(T | Z = `)] ,

∂

∂π`
log f(t | θ) =

f(t | η`)− f(t | ηs)
f(t | θ)

,

for ` = 1, . . . , s. Let W` be a random variable with the distribution of T when Z = ` is

observed. The Fisher information matrix inW` for η` can be obtained as

E

{
− ∂2

∂η`∂ηT`
log f(t | η`)

}
= E

{
−m ∂2

∂η`∂ηT`
a(η`)

}
= Var(W`)

= m{Var(U1 | Z = `)}. (3.2)

Denote I(θ) as the FIM of T under the finite mixture unconditional on Z, and Ĩ(θ) as the

FIM of the complete data (T , Z), both with respect to the parameter θ = (η1, . . . ,ηs,π).

Let q = sk + s − 1 denote the dimension of θ. We will sometimes use the subscript m

to emphasize that the matrices depend on the number of observations m. The following

proposition gives a closed form for Ĩ(θ).

Proposition 3.1. Ĩ(θ) can be written as the q × q block diagonal matrix

Ĩ(θ) = Blockdiag (π1F1, . . . , πsFs,Fπ) ,
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where for ` = 1, . . . , s,

F` = m{Var(U1 | Z = `)}

is the k × k FIM with respect to T | Z = `, and

Fπ = D−1
π + π−1

s 11T and Dπ = Diag(π1, . . . , πs−1)

is the FIM of Mults(π, 1) of dimension (s− 1)× (s− 1). Here 1 denotes a vector of ones

of the appropriate dimension.

Proof. The complete data likelihood for (T , Z) is

f(t, z | θ) =
s∏
`=1

[
π`f(t | η`)

]I(z=`)
.

Let ∆ = (∆1, . . . ,∆s) so that ∆` = I(Z = `) ∼ Bernoulli(π`), and let ∆−s denote the

vector (∆1, . . . ,∆s−1). This complete data likelihood leads to the score vector with

∂

∂ηa
log f(t, z | θ) = ∆a

∂

∂ηa
log f(t | ηa),

∂

∂π
log f(t, z | θ) = D−1

π ∆−s −
∆s

πs
1.

Taking second derivatives yields

∂2

∂ηa∂ηTa
log f(t, z | θ) = ∆a

∂2

∂ηa∂ηTa
log f(t, | ηa)

∂2

∂ηa∂ηTb
log f(t, z | θ) = 0, for a 6= b,

∂2

∂ηa∂πT
log f(t, z | θ) = 0,

∂2

∂π∂πT
log f(t, z | θ) = −

[
D−2

π ∆−s +
∆s

π2
s

11T
]
.
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Now take the expected value of the negative of each of these terms, jointly with respect

to (T , Z), to obtain the blocks of Ĩ(θ).

The matrix Ĩ(θ) is seen to serve the role of the approximate information matrix,

which was introduced in Chapter 2 in the more restricted context of the finite mixture of

multinomials. In Section 3.3 we show that Ĩm(θ) − Im(θ) → 0 as m → ∞, just as in

the setting of multinomial finite mixtures.

3.3 Convergence of Approximate Information Matrix

The proof of the convergence of Ĩm(θ)− Im(θ) to 0 will proceed in several steps.

We will first show that this difference is the expected value an the information matrix. One

simple consequence of this is that the difference must be positive semidefinite. Denote

IZ|T (θ) as the FIM of Z conditional on T .

Lemma 3.2. The matrix Ĩ(θ)− I(θ) is equal to ET
[
IZ|T (θ)

]
.

Proof. Notice that

∂

∂θ
log fθ(T , Z) =

∂

∂θ
log fθ(Z | T ) +

∂

∂θ
log fθ(T ).
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Therefore,

Ĩ(θ) = ET ,Z

[{
∂

∂θ
log fθ(T , Z)

}{
∂

∂θ
log fθ(T , Z)

}T]

= ET EZ|T

[{
∂

∂θ
log fθ(Z | T )

}{
∂

∂θ
log fθ(Z | T )

}T]

+ ET ,Z

[{
∂

∂θ
log fθ(Z | T )

}{
∂

∂θ
log fθ(T )

}T]

+ ET ,Z

[{
∂

∂θ
log fθ(T )

}{
∂

∂θ
log fθ(Z | T )

}T]

+ ET

[{
∂

∂θ
log fθ(T )

}{
∂

∂θ
log fθ(T )

}T]

= ET
[
IZ|T (θ)

]
+B∗ +BT

∗ + I(θ) (3.3)

where the last term is equal to I(θ). Now we have

B∗ = ET ,Z

[{
∂

∂θ
log fθ(Z | T )

}{
∂

∂θ
log fθ(T )

}T]

= ET EZ|T

[{
∂

∂θ
log fθ(Z | T )

}{
∂

∂θ
log fθ(T )

}T]

= ET EZ|T

[{
∂

∂θ
log fθ(Z | T )

}]{
∂

∂θ
log fθ(T )

}T
= 0

The result follows from rearranging terms in (3.3).

The quantity ET
[
IZ|T (θ)

]
has been referred to as the “missing information” (Or-

chard and Woodbury, 1972), so that we have

Observed Information = Complete Information−Missing Information.

Before proceeding with the main result, we can state a few important consequences of
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the previous lemma. The first says that standard errors obtained from the approximate

information matrix are systematically too optimistic (small) compared to those obtained

from the exact information matrix.

Corollary 3.3. Suppose I(θ) and Ĩ(θ) are nonsingular, and that Ĩ(θ)−I(θ) is positive

definite. Denote by I ij(θ) and Ĩ ij(θ) the elements of the two inverse matrices respec-

tively. Then Ijj(θ) > Ĩjj(θ) for j = 1, . . . , q.

Proof. Proposition A.3 gives that I−1(θ) − Ĩ−1(θ) is positive definite. Therefore the

diagonal elements

eTj

[
I−1(θ)− Ĩ−1(θ)

]
ej, j = 1, . . . , q.

are positive.

Similarly, we can show that a Wald-like test statistic based on the approximation

will be systematically too large, and a Score-like test statistic will be too small.

Corollary 3.4. For any θ0 ∈ Θ,

(θ̂ − θ0)T Ĩ(θ̂)(θ̂ − θ0) ≥ (θ̂ − θ0)TI(θ̂)(θ̂ − θ0)

Proof. Consider the quantity

(θ̂ − θ0)T
(
Ĩ(θ̂)− I(θ̂)

)
(θ̂ − θ0). (3.4)

From Lemma 3.2, Ĩ(θ̂) − I(θ̂) = ET
[
IZ|T (θ)

]
, an expected value of a conditional in-

formation matrix which is positive semidefinite. Therefore (3.4) is seen to be nonnegative

and the result follows.
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Corollary 3.5. Under the same conditions as Corollary 3.3,

[S(θ0)]TI−1(θ0)[S(θ0)] > [S(θ0)]T Ĩ−1(θ̂0)[S(θ0)]

for any θ0 ∈ Θ.

Proof. This follows from applying Proposition A.3 to

[S(θ0)]T
(
I−1(θ0)− Ĩ−1(θ̂0)

)
[S(θ0)]. (3.5)

Because I−1(θ0) − Ĩ−1(θ̂0) is positive definite, the quantity (3.5) is seen to be strictly

positive, and the result follows.

An important consequence of Lemma 3.2 is given as Proposition 3.6, which con-

cludes that the diagonal elements of Ĩm(θ) − Im(θ) have the largest magnitudes in the

matrix. Therefore, the convergence of all elements to zero will follow if we can show that

the diagonal elements convergence to zero.

Proposition 3.6. Denote the (i, j)th element of IZ|T (θ) as C(m)
ij when the sample size is

m. Then

E |C(m)
ij | ≤

{
E(C

(m)
ii )

}1/2 {
E(C

(m)
jj )

}1/2

.

Proof. Recall that E(C
(m)
ij ) is the (i, j)th element of Ĩm(θ) − Im(θ) by Lemma 3.2.

Because IZ|T (θ) is the covariance matrix of a score function, we may apply the Cauchy-

Schwarz inequality to obtain

|C(m)
ij | ≤ [C

(m)
ii ]1/2 · [C(m)

jj ]1/2.
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for any pair (i, j), and therefore

E |C(m)
ij | ≤ E

{
[C

(m)
ii ]1/2 · [C(m)

jj ]1/2
}
.

Now apply the Cauchy-Schwarz inequality to the right hand side to obtain

E
{

[C
(m)
ii ]1/2 · [C(m)

jj ]1/2
}
≤
{

E[(C
(m)
ii )

1
2
·2]
}1/2

·
{

E[(C
(m)
jj )

1
2
·2]
}1/2

≤
{

E[C
(m)
ii ]
}1/2

·
{

E[C
(m)
jj ]
}1/2

,

which gives the result.

We are focusing on the parameterization θ = (η1, . . . ,ηs,π) for its convenience.

The following remark discusses the convergence behavior under a transformation ψ(θ)

of the parameters.

Remark 3.7. Suppose ψ(θ) is a transformation of θ which does not depend on m. We

have that

Ĩm(ψ)− Im(ψ) =

(
∂θ

∂ψ

)[
Ĩm(θ)− Im(θ)

]( ∂θ
∂ψ

)T
,

so that Ĩm(ψ) − Im(ψ) as m → ∞ if and only if Ĩm(θ) − Im(θ). Also note that the

rate of convergence of the elements of Ĩm(ψ) − Im(ψ) is determined by the rate of the

elements of Ĩm(θ)−Im(θ). Therefore, the development focuses on the parameterization

θ = (η1, . . . ,ηs,π) even though our eventual interest may be in ψ(θ).
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Now consider the block decomposition of the exact information matrix

I(θ) =



A11 . . . A1s A1π

... . . . ...
...

As1 . . . Ass Asπ

Aπ1 . . . Aπs Aππ


, (3.6)

with blocks

Aab = E

[{
∂

∂ηa
log f(t | θ

}{
∂

∂ηb
log f(t | θ)

}T]
, a, b ∈ {1, . . . , s},

AT
bπ = Aπb = E

[{
∂

∂π
log f(t | θ)

}{
∂

∂ηb
log f(t | θ)

}T]
, b ∈ {1, . . . , s},

Aππ = E

[{
∂

∂π
log f(x | θ)

}{
∂

∂π
log f(t | θ)

}T]
.

By Proposition 3.6, we only need to show convergence for the diagonal elements of

Ĩ(θ) − I(θ); to do this, we will obtain expressions for the diagonal blocks. It will be

helpful to define

R
(m)
i (t) =

s∑
6̀=i

π` exp{(η` − ηi)T t+m[a(η`)− a(ηi)]} ≡
f(t | θ)

f(t | ηi)
− πi, and

Q
(m)
i (t) =

πif(t | ηi)
f(t | θ)

.

Notice that Q(m)
i (T ) = P(Z = ` | T ) is the posterior probability of observing the `th

subpopulation given an observed T , hence taking expectation with respect to the mixture

density of f(t | θ) yields

ET [Q
(m)
i (T )] = ET

{
EZ|T [I(Z = `) | T ]

}
= P(Z = `) = π`. (3.7)

Later we will encounter the same expectation but under the density f(t | η`), in which
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case the simplification (3.7) does not happen. Now consider block (i, i) of the decompo-

sition (3.6). We have

πiFi −Aii = πiFi − E

[{
∂

∂ηi
log f(t | θ)

}{
∂

∂ηi
log f(t | θ)

}T]

= πi

∫ (
t+ma′(ηi)

)(
t+ma′(ηi)

)T
f(t | θ)dν(t)

−
∫ (

πif(t | ηi)
f(t | θ)

)2 (
t+ma′(ηi)

)(
t+ma′(ηi)

)T
f(t | θ)dν(t)

= π2
i

∫ (
1

πi
− πif(t | ηi)

f(t | θ)

)(
t− E(Wi)

)(
t− E(Wi)

)T
f(t | ηi)dν(t)

= π2
i

∫ (
f(t | θ)− πif(t | ηi)

f(t | θ)

)(
t− E(Wi)

)(
t− E(Wi)

)T
f(t | ηi)dν(t)

= π2
i

∫ [
1−Q(m)

i (t)
] (
t− E(Wi)

)(
t− E(Wi)

)T
f(t | ηi)dν(t)

The jth diagonal element of this block is therefore

π2
i

∫ [
1−Q(m)

i (t)
] [
tj − E(Wij)

]2

f(t | ηi)dν(t)

= π2
i E

{[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2
}

(3.8)

Now consider the lower right block of the decomposition (3.6),

Fπ −Aππ =
(
D−1

π + π−1
s 11T

)
− E

[{
∂

∂π
log f(t | θ)

}{
∂

∂π
log f(t | θ)

}T]
(3.9)

=
(
D−1

π + π−1
s 11T

)

− E

 1

f 2(t | θ)


f(t | η1)− f(t | ηs)

...

f(t | ηs−1)− f(t | ηs)




f(t | η1)− f(t | ηs)
...

f(t | ηs−1)− f(t | ηs)


T .

Denote the (a, b)th entry of Fπ −Aππ as ξab. Expressions for the diagonal elements are
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given by

ξaa = (π−1
a + π−1

s )− E

[(
f(t | ηa)− f(t | ηs)

f(t | θ)

)2
]

= (π−1
a + π−1

s )− E

[
f 2(t | ηa)− 2f(t | ηa)f(t | ηs) + f 2(t | ηs)

f 2(t | θ)

]
= (π−1

a + π−1
s )−

∫
f 2(t | ηa)
f(t | θ)

dν(t)−
∫
f 2(t | ηs)
f(t | θ)

dν(t)

+ 2

∫
f(t | ηa)f(t | ηs)

f(t | θ)
dν(t) + 2

∫
f(t | ηa)f(t | ηs)

f(t | θ)
dν(t)

= (π−1
a + π−1

s )− π−1
a

∫
Q(m)
a (t)f(t | ηa)dν(t)− π−1

s

∫
Q(m)
s (t)f(t | ηs)dν(t)

+ 2π−1
a

∫
Q(m)
a (t)f(t | ηs)dν(t)

= (π−1
a + π−1

s )− π−1
a E

[
Q(m)
a (Wa)

]
− π−1

s E
[
Q(m)
s (Ws)

]
+ 2π−1

a E
[
Q(m)
a (Ws)

]
(3.10)

The following Lemma gives a convexity result for exponential family densities

which will determine the behavior of R(m)
i (Wj) and Q(m)

i (Wj) as m→∞.

Lemma 3.8. Suppose the density f(t | η) = exp{ηT t+ma(η)}, has natural parameter

space Ξ which is an open convex set, and FIM Im(η) is positive definite on Ξ. Then for

any η∗ ∈ Ξ

a(η)− a(η∗) < a′(η∗)T (η − η∗), ∀η ∈ Ξ. (3.11)

where a′(η) denotes the derivative of a at η.

Proof. This proof uses a convexity argument (Boyd and Vandenberghe, 2004, c.f.). No-

tice that the Hessian Ha(η) of a(η) can be obtained from

∂2

∂η∂ηT
log f(t | η) =

∂

∂η

[
t+ma′(η)

]
= mHa(η).

Now we have that Im(η) = −mHa(η) is positive definite on Ξ, which implies that −a

is a strictly convex function. Since a is differentiable on the convex set Ξ we have, for

87



g := −a,

g(η)− g(η∗) > g′(η∗)T (η − η∗), ∀η ∈ Ξ,

which is equivalent to the result (3.11).

Next, the behavior ofR(m)
i (Wj) andQ(m)

i (Wj) can be determined for largem; note

that the behavior depends on which the distribution, j = 1, . . . , s, is assumed forWj . Let

us define the expressions

− γIJK = −a′(ηJ)T (ηI − ηK) + [a(ηI)− a(ηK)],

c∗i =
s∧
6̀=i

γ`ii, d∗ij =
s∨
` 6=i

{−γ`ji} , and c∗∗ =
s∧
`=1

c∗` , (3.12)

which will be used throughout the rest of the chapter.

Proposition 3.9. Suppose ηa 6= ηb for all a 6= b. Then

(a) R(m)
i (Wi)

a.s.
= o(e−mc

∗
i ) for c∗i > 0, so that R(m)

i (Wi)
a.s.→ 0 as m→∞.

(b) If j 6= i then for d∗ij > 0 and γijj > 0,

O(emγijj) ≤ R
(m)
i (Wj) ≤ O(emd

∗
ij), almost surely, for all large m.

As a consequence, R(m)
i (Wj)

a.s.→ ∞ as m→∞.

Proof. By the strong law of large numbers and continuity, we have that for almost any

ω ∈ Ω and any ε > 0, there exists an Mω such that, for all m ≥Mω,

∣∣∣(η` − ηi)T [−a′(ηj)]− (η` − ηi)TWj(ω)/m
∣∣∣ < ε

⇐⇒ −a′(ηj)T (η` − ηi)− ε < (η` − ηi)TWj(ω)/m < −a′(ηj)T (η` − ηi) + ε.
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This implies that ∀m ≥Mω

R
(m)
i (Wj(ω)) ≤

s∑
6̀=i

π` exp
{
m
[
− a′(ηj)T (η` − ηi) + [a(η`)− a(ηi)] + ε

]}
=

s∑
6̀=i

π` exp{m (−γ`ji + ε)},

and

R
(m)
i (Wj(ω)) ≥

s∑
6̀=i

π` exp
{
m
[
− a′(ηj)T (η` − ηi) + [a(η`)− a(ηi)]− ε

]}
=

s∑
6̀=i

π` exp{m (−γ`ji − ε)}.

Case (a). Suppose j = i. From Lemma 3.8 we have

γ`ii = a′(ηi)
T (η` − ηi)− [a(η`)− a(ηi)] > 0

for all ` 6= i, so that for m ≥Mω,

0 ≤ R
(m)
i (Wi(ω))

≤
s∑
`6=i

π`e
m(−γ`ii+ε)

=
s∑
`6=i

π`e
−m(γ`ii−ε)

≤ e−m(c∗i−ε)
s∑
` 6=i

π`

≤ e−m(c∗i−ε)

→ 0, as m→∞.

Note that c∗i > ε when ε > 0 is taken arbitrarily small. Since this holds for almost every

ω ∈ Ω, we have R(m)
i (Wi)

a.s.→ 0 and R(m)
i (Wi)

a.s.
= o(e−mc

∗
i ).
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Case (b). Now suppose j 6= i. Consider for ` = 1, . . . , s,

−γ`ji = −a′(ηj)T (η` − ηi) + [a(η`)− a(ηi)].

Notice that

−γjji = −a′(ηj)T (ηj − ηi) + [a(ηj)− a(ηi)]

= a′(ηj)
T (ηi − ηj)− [a(ηi)− a(ηj)]

= γijj,

where γijj > 0 by Lemma 3.8. Then for m ≥Mω,

R
(m)
i (Wj(ω)) ≥

s∑
6̀=i

π`e
m(−γ`ji−ε) ≥ πje

m(−γjji−ε) = πje
m(γijj−ε) →∞, (3.13)

as m → ∞, since γijj − ε > 0 for arbitrarily small ε > 0. Therefore R(m)
i (Wj)

a.s.→ ∞.

We can also obtain an upper bound using

R
(m)
i (Wj(ω)) ≤

s∑
6̀=i

π`e
m(−γ`ji+ε) ≤

s∑
`6=i

π`e
m(d∗ij+ε) ≤ em(d∗ij+ε), (3.14)

noting that

d∗ij =
s∨
`6=i

{−γ`ji} ≥ −γjji = γijj > 0.

We have therefore found the upper and lower bounds

πje
m(γijj−ε) ≤ R

(m)
i (Wj(ω)) ≤ em(d∗ij+ε), ∀m ≥Mω,
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and hence the desired almost sure bounds

πje
mγijj ≤ R

(m)
i (Wj) ≤ emd

∗
ij , for all large m.

are obtained.

Proposition 3.10. Suppose ηa 6= ηb for all a 6= b. Then

(a) 1−Q(m)
i (Wi)

a.s.
= O(e−mc

∗
i ), so that Q(m)

i (Wi)
a.s.→ 1 as m→∞,

(b) If j 6= i then Q(m)
i (Wj)

a.s.
= O(e−mγijj), so that Q(m)

i (Wj)
a.s.→ 0 as m→∞,

with c∗i and γijj as defined in (3.12).

Proof. Notice that

Q
(m)
i (t) =

πi exp{ηTi t+ma(ηi)}∑s
`=1 π` exp{ηT` t+ma(η`)}

=
πi

πi +
∑s

`6=i π` exp{(η` − ηi)T t+m[a(η`)− (η`)]}

=
πi

πi +R
(m)
i (t)

(3.15)

Now apply Proposition 3.9 to obtain the limits. To obtain the rates, first take T = Wi,

and notice that

1−Q(m)
i (Wi) = 1− πi

πi +R
(m)
i (Wi)

=
1

πi

[
R

(m)
i (Wi)

]−1

+ 1

Since R(m)
i (Wi)

a.s.
= O(e−mc

∗
i ) by Proposition 3.9, there exists a constant K such that

∣∣∣∣∣R(m)
i (t)

e−mc
∗
i

∣∣∣∣∣ < K,

⇐⇒ R
(m)
i (Wi) < Ke−mc

∗
i

⇐⇒
[
R

(m)
i (Wi)

]−1

> K−1emc
∗
i ,

91



almost surely, for all m large. Then we have

emc
∗
i

[
1−Q(m)

i (Wi)
]
≤ emc

∗
i

πiK−1emc
∗
i + 1

, almost surely, for all m large

→ K

πi
, as m→∞,

and so we have the result 1−Q(m)
i (t) = O(e−mc

∗
i ).

Now take T = Wj for j 6= i. Notice that

Q
(m)
i (Wj) =

πi

πi +R
(m)
i (Wj)

,

and Proposition 3.9 gives that

R
(m)
i (Wj) ≥ emγijj , almost surely for all large m.

Then we have

emγijjQ
(m)
i (Wj) =

πie
mγijj

πi +R
(m)
i (Wj)

≤ πie
mγijj

πi +O(emγijj)
, almost surely for all large m,

which converges to a constant as m → ∞. Then we have the result Q(m)
i (Wj)

a.s.
=

O(e−mγijj).

Proposition 3.10 suggests that the convergence between the exact and approximate

information will be fast when both of the following happen quickly as m is increased:

(1) the posterior probability of being in the `th subpopulation goes to 1 when the true

subpopulation Z = `, and (2) the posterior probability of being in the `th subpopulation

goes to 0 when the true subpopulation Z 6= `. It is clear from Proposition 3.10 and

dominated convergence that the expectation (3.10) converges to zero. We also note that

92



Wij − E(Wij) is a sum of independent and identically distributed random variables, so

that [Wij − E(Wij)]
2 = O(m2), and therefore

π2
i

[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2 a.s.
= O(m2e−mc

∗
i ).

Therefore, its expectation (3.8) converges to zero if and only if the sequence

[1−Q(m)
i (Wi)][Wij − E(Wij)]

2, m = 1, 2, . . . (3.16)

is uniformly integrable (Resnick, 1999, chapter 6). The convergence of Ĩm(θ) − Im(θ)

can therefore be characterized in the following theorem.

Theorem 3.11. Ĩm(θ) − Im(θ) → 0 as m → ∞ if and only if the sequence (3.16) is

uniformly integrable for each i = 1, . . . , s.

Some additional work will allow us to conclude convergence of the expectations

without needing to verify uniform integrability, and also to obtain rates.

Lemma 3.12. E
[
Q

(m)
i (Wi)

]
= 1−O(e−mc

∗
i ) with c∗i defined as in (3.12).

Proof. From the Markov inequality we have,

P
(
Q

(m)
i (Wi) ≥ ε

)
≤

E
[
Q

(m)
i (Wi)

]
ε

≤ 1

ε
, for any ε > 0,

recalling that 0 ≤ Q
(m)
i (Wi) ≤ 1. Equivalently,

εP
(
Q

(m)
i (Wi) ≥ ε

)
≤ E

[
Q

(m)
i (Wi)

]
≤ 1.

Proposition 3.10 gives that Q(m)
i (Wi)

a.s.
= 1−O(e−mc

∗
i ), which implies

P
(
Q

(m)
i (Wi) ≥ ε

)
= 1−O(e−mc

∗
i ),
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assuming that 0 < ε < 1. Therefore

ε
[
1−O(e−mc

∗
i )
]
≤ E

[
Q

(m)
i (Wi)

]
≤ 1.

Taking ε < 1 arbitrarily close to 1 gives the result.

Lemma 3.13. Let Sn = X1 + · · · + Xn where {Xi} are independent and identically

distributed and E(|X1|k) <∞ for a given positive integer k ≥ 0. Then E(Skn) = O(nk).

Proof. Notice that

E(Skn) = E[(X1 + · · ·+Xn)k]

= E

 ∑
z∈Ωn,k

k!

z1! · · · zn!
Xz1

1 · · ·Xzn
n


=
∑
z∈Ωn,k

k!

z1! · · · zn!
E[Xz1

1 ] · · ·E[Xzn
n ]

=
∑
z∈Ωn,k

k!

z1! · · · zn!
E[Xz1

1 ] · · ·E[Xzn
1 ]

where Ωn,k is the multinomial sample space with n categories and k trials. Let

ξ = max
z∈Ωn,k

∣∣∣E[Xz1
1 ] · · ·E[Xzn

1 ]
∣∣∣

and note that ξ ≥ 0 is finite since the expression involves only moments of X1 up to order

k, which are all assumed to be finite. Now we have

∣∣E(Skn)
∣∣ ≤ ξ

∑
z∈Ωn,k

k!

z1! · · · zn!
= ξnk

which gives the result.

The following theorem gives rates for the diagonal elements of the matrix Ĩ(θ) −

I(θ), which dominate the other elements of the matrix. We require that fourth moments
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are finite for all components of the originalXi given Z = ` for ` = 1, . . . , s. But this does

not represent any additional restriction; an Exponential family of full rank has a moment

generating function which is finite in a neighborhood of zero (Shao, 2008, Theorem 2.1),

therefore all moments exist.

Theorem 3.14. Consider the matrix Ĩ(θ)− I(θ);

(a) For the jth diagonal element of the ith diagonal block,

eTj (πiFi −Aii) ej = O(m2e−
m
2
c∗i ),

provided that E[|X1j|4 | Z = i] <∞.

(b) For the jth diagonal element of the π diagonal block,

eTj (Fπ −Aππ) ej = O(e−mc
∗
j ) +O(e−mc

∗
s) +O(e−mγjss), j = 1, . . . , s− 1

Proof. For (a) we have

π2
i E

{[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2
}

≤ π2
i

√
E

[(
1−Q(m)

i (Wi)
)2
]√

E

[(
Wij − E(Wij)

)4
]

(by Cauchy-Schwarz inequality)

≤ π2
i

√
E
[
1−Q(m)

i (Wi)
]√

E

[(
Wij − E(Wij)

)4
]

(since 0 ≤ X ≤ 1 =⇒ X2 ≤ X =⇒ E(X2) ≤ E(X))

= π2
i

{
O(e−mc

∗
i )O(m4)

}1/2

(by Corollary 3.12 and Lemma 3.13 )

= O(m2e−
m
2
c∗i )
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For (b), use Proposition 3.10 with the expectation (3.10) to obtain

(π−1
j + π−1

s )− π−1
j E

[
Q

(m)
j (Wj)

]
− π−1

s E
[
Q(m)
s (Ws)

]
+ 2π−1

j E
[
Q

(m)
j (Ws)

]
= π−1

j O(e−mc
∗
j ) + π−1

s O(e−mc
∗
s) + 2π−1

j O(e−mγjss).

Note that the rates obtained in Theorem 3.14 match Corollary 2.6 for the multinomial

case.

Remark 3.15. Hölder’s Inequality can be used to weaken the assumption of a finite fourth

moment in Theorem 3.14, at the cost of a slower exponential rate in the bound. Suppose

u, v > 1 such that 1/u+ 1/v = 1; then v = u/(u− 1) and Hölder’s Inequality gives

π2
i E

{[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2
}

≤ π2
i

{
E
[(

1−Q(m)
i (Wi)

)u]}1/u
{

E

[(
Wij − E(Wij)

) 2u
u−1

]}u−1
u

.

Now u can be taken arbitrarily large so that u/(u − 1) < 1 + ε for any ε > 0. Then we

have

π2
i E

{[
1−Q(m)

i (Wi)
] [
Wij − E(Wij)

]2
}

≤ π2
i

{
E
[(

1−Q(m)
i (Wi)

)u]}1/u
{

E

[(
Wij − E(Wij)

)2(1+ε)
]}u−1

u

≤ π2
i

{
E
[
1−Q(m)

i (Wi)
]}1/u

{
E

[(
Wij − E(Wij)

)2(1+ε)
]}u−1

u

= O(e−
m
u
c∗)

{
E

[(
Wij − E(Wij)

)2(1+ε)
]}u−1

u

.

Therefore, the moment assumption can be weakened significantly, although the upper
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bound O(e−
m
u
c∗i ) will become increasingly less useful as u is taken to be larger. In the

case of the full rank Exponential family we have all moments, and there is no need to

weaken the assumptions.

Because of the convenient block-diagonal form of the information matrix approximation,

its inverse Ĩ−1
m (θ) = Blockdiag(π−1

1 F
−1
1 , . . . , π−1

s F
−1
s ,F−1

π ) is also block-diagonal. As

in Chapter 2, the convergence result for Ĩm(θ)−Im(θ) can be used to show convergence

between the inverses.

Lemma 3.16. Suppose Im(θ) and Ĩm(θ) are nonsingular. Then I−1
m (θ) − Ĩ−1

m (θ) → 0

as m→∞.

Proof. The proof is adapted from the proof of Theorem 2.10. Notice here that

‖Ĩ−1(θ)‖2
F =

s∑
`=1

‖π−1
` F

−1
` ‖

2
F + ‖F−1

π ‖2
F

=
s∑
`=1

m−2π−2
` ‖Ĩ

−1
1 (η`)‖2

F + ‖Dπ − ππT‖2
F

= ‖Dπ − ππT‖2
F +O(m−2)

where Ĩ1(η`) = Var(U1 | Z = `), as obtained in (3.2), is free of m. Let c∗∗ =
∧s
i=1 c

∗
i ,

and use Proposition 3.6 and Theorem 3.14 to obtain the simple bound

‖Ĩm(θ)− Im(θ)‖2
F = q2O(m2e−

m
2
c∗∗).

By the same argument as in Theorem 2.10, ‖I−1
m (θ)‖F = O(1). We then have

‖I−1
m (θ)− Ĩ−1

m (θ)‖F ≤ ‖I−1
m (θ)‖F · ‖Ĩ−1

m (θ)‖F · ‖Ĩm(θ)− Im(θ)‖F

= O(1) ·
{
‖Dπ − ππT‖2

F +O(m−2)
}
·
{
q2O(m2e−

m
2
c∗∗)
}1/2

,

which gives the result.
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3.4 Relationship to Classification Problem

There is a fundamental connection between the convergence behavior of Ĩm(θ) −

Im(θ) and the probability of misclassification using an optimal rule. Namely, both depend

on the separation between subpopulations in a similar way. Suppose that there are s sub-

populations with densities f(x | φ1), . . . , f(x | φs) from an exponential family, which

occur in the overall population in respective proportions π1, . . . , πs. Now letX1, . . . ,Xm

be independently and identically distributed from subpopulation Z = j, but Z is not ob-

served. We consider classification rules on T =
∑m

i=1U(Xi) which is sufficient given Z.

The classification problem is to specify a rule, described by regions D = {D1, . . . ,Ds}

which partition the space T of T so that

T ∈ D` ⇐⇒ T belongs to `th subpopulation.

One objective is to specify a rule D which minimizes the probability of misclassification

p(D). (Another may be to minimize the cost of misclassification, if the possible misclas-

sifications are assigned different costs). It is well-known (Anderson, 2003) that the rule

D∗ = {D∗1, . . . ,D∗s} using

D∗` =

{
t ∈ T : ` = argmax

a
πaf(t | φa)

}
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minimizes p(D). Using this optimal rule, we may compute

p(D∗) =
s∑
`=1

P(T /∈ D∗` | Z = `) P(Z = `)

=
s∑
`=1

π` P

(⋃
j 6=`

[T ∈ D∗j ]

∣∣∣∣∣ Z = `

)

=
s∑
`=1

π` P

(⋃
j 6=`

[πjf(T | φj) ≥ π`f(T | φ`)]

∣∣∣∣∣ Z = `

)

≤
s∑
`=1

π` P

(∑
j 6=`

πjf(T | φj) ≥ π`f(T | φ`)

∣∣∣∣∣ Z = `

)

=
s∑
`=1

π` P
(
R

(m)
` (W`) ≥ π`

)
.

The optimal probability of misclassification p(D∗) provides an objective measurement on

the degree of separation between the s subpopulations; a higher probability indicates that

it is more difficult to distinguish among them. However, the rule D∗ can only be applied

when all φ` and π are known. Recall that R(m)
` (W`)

a.s.
= o(e−mc

∗
i ), so that we obtain

p(D∗) = o(e−mc
∗
i ) where c∗i was defined in (3.12). Therefore, collection of additional

observations for T =
∑m

i=1U(Xi) may drastically improve p(D∗) if c∗i is large, and has

almost no effect when c∗i is very small.

To see the relationship between p(D∗) and the convergence rate of the approximate

information matrix, notice that

P
(
R

(m)
` (W`) ≤ π`

)
= lim

ε↑1
εP

[
R

(m)
` (W`) ≤ π`

(
1

ε
− 1

)]
= lim

ε↑1
εP
(
Q

(m)
` (W`) ≥ ε

)
≤ E

[
Q

(m)
` (W`)

]
⇐⇒ E

[
1−Q(m)

` (W`)
]
≤ P

(
R

(m)
` (W`) ≥ π`

)
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so that P
(
R

(m)
` (W`) ≥ π`

)
gives an upper bound on the probability of misclassifying T

when Z = `. Recall that the convergence rate of the `th block of Ĩm(θ)−Im(θ) depends

on E
[
1−Q(m)

` (W`)
]
, as in the proof of Theorem 3.14. Proposition 3.9 gives

P
(
R

(m)
` (W`) ≥ π`

)
≤ P

(
O(e−mc

∗
` ) ≥ π`

)
= O(e−mc

∗
` )

so that

p(D∗) ≤
s∑
`=1

π`O(e−mc
∗
` ).

3.5 Examples

Example 3.17 (Multinomial Populations). The multinomial case was the focus of Chap-

ter 2. To apply the more general results from this chapter, letX1, . . . ,Xm | Z = j be in-

dependent and identically distributed as Multk+1(1,pj), with Z ∼ Discrete(1, . . . , s;π).

Let T =
∑m

i=1Xi. Recall that the multinomial subpopulations are exponential families

with

f(t | m,p`) = exp

{
log

m!

t1! · · · tk+1!
+

k+1∑
a=1

ta log p`a

}

= exp

{
log

m!

t1! · · · tk+1!
+

k∑
a=1

ta log p`a +

(
m−

k∑
a=1

ta

)
log p`,k+1

}

= exp

{
log

m!

t1! · · · tk+1!
+

k∑
a=1

ta log
p`a
p`,k+1

+m log p`,k+1

}
,

where p`,k+1 = 1−
∑k

a=1 p`a. The natural parameter is then

ηj =

(
log

p`1
p`,k+1

, · · · , log
p`k
p`,k+1

)
.
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The approximate information matrix with respect to θ = (η1, . . . ,ηs,π) is then

Ĩ(θ) = Blockdiag(π1F1, . . . , πsFs,Fπ)

where F` = mVar(U1) = m{Diag(p`) − p`pT` }. It can also be shown that ∂η`/∂p` =

Diag(p`)
−1 + p−1

`,k+111T , so that

Ĩ(p`) =

(
∂η`
∂p`

)
Ĩ(η`)

(
∂η`
∂p`

)T
=
{

Diag(p`)
−1 + p−1

`,k+111T
}
m{Diag(p`)− p`pT` }

{
Diag(p`)

−1 + p−1
`,k+111T

}
= m

{
Diag(p`)

−1 + p−1
`,k+111T

}
.

Therefore we obtain the form of Ĩ(ψ) with respect to the parameterψ = (p1, . . . ,ps,π),

which was studied in Chapter 2.

Example 3.18 (Normal Populations). Let X1, . . . ,Xm | Z = j be independent and

identically distributed in Rk as N(µj,Σ), with Z ∼ Discrete(1, . . . , s;π), so that T =∑m
i=1Xi | Z = j ∼ N(mµj,mΣ). Let us compare the approximate and exact informa-

tion matrices with respect to ψ = (µ1, . . . ,µs,π) where Σ is taken to be known for the

sake of demonstration. Recall that the Normal subpopulations are exponential families

with

f(t | mµj,mΣ) = exp

{
−1

2
(t−mµj)T (mΣ)−1(t−mµj)−

k

2
log(2π)− 1

2
log |mΣ|

}
= exp

{
− 1

2

[
tT (mΣ)−1t− 2(mµj)

T (mΣ)−1t+ (mµj)
T (mΣ)−1(mµj)

]
− k

2
log(2π)− 1

2
log |mΣ|

}
= exp

{
ηTj t+ma(ηj) + h(t)

}
.

Here, ηTj t = (mµj)
T (mΣ)−1t and hence ηj = Σ−1µj is the natural parameter. We also
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have

ma(ηj) = −1

2
(mµj)

T (mΣ)−1(mµj) = −m1

2
µTj Σ−1µj = −m1

2
ηTj Σηj.

The first and second derivatives of the log-density under Z = j, with respect to ηj , are

∂

∂ηj
log f(t | ηj) =

∂

∂ηj

{
ηTj t+ma(ηj)

}
= t−mΣηj,

− ∂2

∂ηj∂ηTj
log f(t | ηj) = mΣ,

therefore the information contained in µj in T under the jth subpopulation is given by

I(µj) =

(
∂ηj
∂µj

)
I(ηj)

(
∂ηj
∂µj

)T
= Σ−1(mΣ)Σ−1 = mΣ−1.

The approximate information matrix for the mixed population with respect to ψ is then

Ĩ(ψ) = Blockdiag(π1F1, . . . , πsFs,Fπ), with Fj = mΣ−1 for j = 1, . . . , s,

and Fπ = D−1
π + π−1

s 11T . The exact information matrix will be computed numerically,

using the cubature package1 in R for multivariate integration. Let us concretely take

the dimension k = 2 and the number of populations s = 2, with

Σ =

 1 1/2

1/2 1

 and π =

1/4

3/4

 .

Notice that for a mixture with s = 2 components, we have

γ111 = a′(η1)T (η1 − η1)− [a(η1)− a(η1)] = 0,

1http://cran.r-project.org/web/packages/cubature

102

http://cran.r-project.org/web/packages/cubature


and likewise γ121 = γ212 = γ222 = 0. We also have

γ112 = a′(η1)T (η1 − η2)− [a(η1)− a(η2)]

= −a′(η1)T (η2 − η1) + [a(η2)− a(η1)]

= −γ211

and

γ221 = a′(η2)T (η2 − η1)− [a(η2)− a(η1)]

= −a′(η2)T (η1 − η2) + [a(η1)− a(η2)]

= −γ122,

where γ211 and γ122 are nonnegative by Lemma 3.8. Therefore, the numbers γ211 and γ122

together are sufficient to compute the orders for the convergence rates. We will consider

three scenarios for the subpopulation means,

• Scenario 1: µ1 = (−1, 1), µ2 = (1,−1), so that γ221 = γ122 = 8.

• Scenario 2: µ1 = (−1/2, 1/2), µ2 = (1/2,−1/2), so that γ221 = γ122 = 2.

• Scenario 3: µ1 = (−1/8, 1/8), µ2 = (1/8,−1/8), so that γ221 = γ122 = 1/8.

Figure 3.1 plots the mixed populations for the three scenarios. The subpopulations

are well-separated in Scenario 1, while in Scenario 2 there is only a small hint of separa-

tion, and in Scenario 3 the two groups are visually indistinguishable.

Table 3.1 compares the diagonal elements of Ĩm(ψ) with those of Im(ψ), where

the latter have been computed numerically. Also shown is the Frobenius norm of the

matrix Ĩm(ψ)−Im(ψ). Recall from the proof of Lemma 3.16, and by the transformation

Remark 3.7, that

‖Ĩm(ψ)− Im(ψ)‖2
F = q2O(m2e−

m
2
c∗∗).
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As expected, the approximate and exact matrix elements converge together quickly for

Scenario 1, and more slowly for Scenario 2. For Scenario 3, the Frobenius norm at first

increases withm because of the slow the convergence rate, and eventually begins decreas-

ing when m is large. Figure 3.2 plots the norms from all three scenarios. The numerical

integration sometimes produced inaccurate results which appear to be caused by the very

large limits of integration we provided. For example, in Scenario 1 when m = 8 and in

Scenario 2 when m = 26, I55 = 4.6667 instead of the expected 5.3333. These results

have been omitted from the tables and plots.

Example 3.19 (Common-Subpopulation Sampling vs. iid Sampling). It is natural to

ask if there is relationship between the information matrix of X1, . . . ,Xm indepen-

dently and identically distributed from f(x | φZ), but where Z is not observed, and

the information matrix of X1, . . . ,Xm independently and identically distributed from

the finite mixture f(x | θ). The convergence theory in this chapter was developed

strictly for the former case. As a concrete example, suppose X1, . . . , Xm are Normal

random variables. Let Im(θ) denote the information matrix of T =
∑m

i=1 Xi, where

θ = (µ1, . . . , µs, π1, . . . , πs−1) and

T ∼
s∑
`=1

π`
1√

2πm
exp

{
− 1

2m
(t−mµ`)2

}
.

On the other hand, if Xi are iid from density

f(x | θ) =
s∑
`=1

π`
1√
2π

exp

{
−1

2
(x− µ`)2

}
,

then the information matrix is mI1(θ). Suppose we take s = 2 mixing components with

µ1 = −1, µ2 = 1, and π = 1/4. Computing the two information matrices, we have:
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Figure 3.1: Densities for the bivariate normal finite mixture under the three scenarios.
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Table 3.1: Results for Normal mixture. The diagonals Ĩii are given with corresponding
Iii in parentheses. The last column shows Frobenius norm of the matrix difference Ĩ −I.

(a) Scenario 1
m Ĩ11 Ĩ22 Ĩ33 Ĩ44 Ĩ55 ‖Ĩ − I‖F

1 0.333 (0.276) 0.333 (0.273) 1.0 (0.910) 1.0 (0.920) 5.333 (4.914) 0.6486
2 0.667 (0.643) 0.667 (0.643) 2.0 (1.971) 2.0 (1.971) 5.333 (5.290) 0.1419
3 1.000 (0.994) 1.000 (0.994) 3.0 (2.993) 3.0 (2.993) 5.333 (5.328) 0.0304
4 1.333 (1.332) 1.333 (1.332) 4.0 (3.999) 4.0 (3.999) 5.333 (5.333) 0.0060
5 1.667 (1.666) 1.667 (1.666) 5.0 (5.000) 5.0 (5.000) 5.333 (5.333) 0.0011
6 2.000 (2.000) 2.000 (1.999) 6.0 (6.000) 6.0 (6.000) 5.333 (5.333) 0.0002

(b) Scenario 2
m Ĩ11 Ĩ22 Ĩ33 Ĩ44 Ĩ55 ‖Ĩ − I‖F

1 0.333 (0.192) 0.333 (0.192) 1 (0.777) 1 (0.777) 5.333 (2.729) 3.0006
2 0.667 (0.452) 0.667 (0.452) 2 (1.670) 2 (1.670) 5.333 (3.968) 2.1626
3 1.000 (0.761) 1.000 (0.761) 3 (2.653) 3 (2.653) 5.333 (4.592) 1.7011
· · · · · · · · · · · · · · · · · · · · ·
23 7.667 (7.666) 7.667 (7.666) 23 (23.000) 23 (23.000) 5.333 (5.333) 0.0013
24 8.000 (8.000) 8.000 (8.000) 24 (24.000) 24 (24.000) 5.333 (5.333) 0.0008
25 8.333 (8.333) 8.333 (8.333) 25 (25.000) 25 (25.000) 5.333 (5.333) 0.0005

(c) Scenario 3
m Ĩ11 Ĩ22 Ĩ33 Ĩ44 Ĩ55 ‖Ĩ − I‖F

1 0.333 (0.100) 0.333 (0.100) 1 (0.746) 1 (0.746) 5.333 (0.245) 5.1939
2 0.667 (0.227) 0.667 (0.227) 2 (1.488) 2 (1.488) 5.333 (0.480) 5.2334
3 1.000 (0.375) 1.000 (0.375) 3 (2.231) 3 (2.231) 5.333 (0.703) 5.3942
· · · · · · · · · · · · · · · · · · · · ·
28 9.333 (6.112) 9.333 (6.117) 28 (22.989) 28 (22.989) 5.333 (3.736) 13.4873
29 9.667 (6.387) 9.667 (6.369) 29 (23.907) 29 (23.913) 5.333 (3.798) 13.7428
30 10.000 (6.598) 10.000 (6.648) 30 (24.839) 30 (24.843) 5.333 (3.857) 13.9949
· · · · · · · · · · · · · · · · · · · · ·
78 26.000 (21.254) 26.000 (22.472) 78 (73.687) 78 (73.685) 5.333 (5.085) 14.0573
79 26.333 (21.627) 26.333 (22.845) 79 (74.743) 79 (74.737) 5.333 (5.093) 14.0086
80 26.667 (22.001) 26.667 (23.218) 80 (75.800) 80 (75.798) 5.333 (5.102) 13.8565
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Figure 3.2: Frobenius norm of Ĩm − Im, as m varies, for the three normal scenarios.

• For m = 3,

Im(θ) =


0.5370 −0.2023 −0.3692

−0.2023 1.9289 −0.4653

−0.3692 −0.4653 4.5916

 vs.

mI1(θ) =


0.4177 −0.0951 −1.1399

−0.0951 1.6739 −1.7900

−1.1399 −1.7900 8.1871

 .
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• For m = 20,

Im(θ) =


4.9990 −0.0010 −0.0003

−0.0010 14.9989 −0.0003

−0.0003 −0.0003 5.3333

 vs.

mI1(θ) =


2.7845 −0.6341 −7.5991

−0.6341 11.1592 −11.9331

−7.5991 −11.9331 54.5809

 .

• For m = 50,

Im(θ) =


12.5 0.0 0.0000

0.0 37.5 0.0000

0.0 0.0 5.3333

 vs.

mI1(θ) =


6.9612 −1.5853 −18.9977

−1.5853 27.8981 −29.8327

−18.9977 −29.8327 136.4524

 .

It is evident that the convergence discussed in this chapter does not manifest itself when

the sample is unclustered.

Example 3.20 (Dirichlet-Multinomial). Recall from Example 1.2 that Beta-Binomial is a

continuous mixture of Binomial. More generally, Dirichlet-Multinomial is a continuous

mixture of multinomial, and therefore we may write

T | µ ∼ MultJ(m,µ), µ ∼ DirichletJ(α),
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so that the complete data distribution of (T ,µ) is

f(t,µ | α) = f(t | µ)f(µ | α), where

f(t | µ) =
m!

t1! · · · tJ !
µt11 · · ·µ

tJ
J and f(µ | α) =

µα1−1
1 · · ·µαJ−1

J

B(α1, . . . , αJ)
.

Take J = k+ 1 to ensure the parameter space of the multinomial family contains an open

set in Rk, which was assumed at the beginning of the chapter. The Dirichlet-Multinomial

distribution is obtained by finding the marginal distribution of T ,

f(t | α) =

∫
f(t | µ)f(µ | α)dµ, (3.17)

where the integral may be computed in closed form. Although the theory in this chap-

ter has been developed specifically for finite mixtures of exponential families, we can

construct an approximate information matrix using the complete data. Note that the dis-

tribution of T | µ is free of α so that

∂

∂α
log f(t,µ | α) =

∂

∂α
log f(µ | α);

therefore, the complete data information matrix is just the FIM with respect to DirichletJ(α).

This is analogous to the finite mixture case, where the first s diagonal blocks correspond

to the support points of the mixing distribution

Discrete(φ1, . . . ,φs;π),

and the lower-right block of the matrix corresponds to π. Now the mixing process follows

a Dirichlet distribution whose support is the probability simplex in RJ (i.e. which does not

have corresponding entries in the information matrix). Theorem 1 in Neerchal and Morel

(1998) shows that the exact information matrix under the marginal distribution (3.17) of
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T converges to the FIM of Dirichletk(α) asm→∞. Therefore, the theory of this chapter

may extend to more general settings than when the latent mixing process follows a finite

mixture distribution.

Example 3.21 (Normal-Normal). Let us consider a second continuous mixture along the

lines of Example 3.20. The normal-normal hierarchical model is popular in Bayesian

analysis (Gelman et al., 2003, Section 5.4), with one application (for example) in the Fay-

Herriot model for small area estimation (Rao, 2003). The results from this chapter can be

applied in the following sense. Suppose

X̄ | µ ∼ N(µ, σ2/m),

µ ∼ N(θ, τ 2).

and take σ2 and τ 2 to be known for the sake of demonstration. Recall that if T =∑m
i=1Xm ∼ N(mµ,mσ2), then X̄ = T/m and we may obtain the density of X̄ by

transformation from

fX̄(x | θ) =

∫
fX̄(x | µ)fµ(µ | θ)dµ

=

∣∣∣∣ ∂T∂X̄
∣∣∣∣ ∫ fT (t | µ)fµ(µ | θ)dµ

=

∣∣∣∣ ∂T∂X̄
∣∣∣∣ fT (x | θ).

Therefore,

∂

∂θ
log fX̄(x | θ) =

∂

∂θ
log fT (t | θ),

and the information is the same whether we work with X̄ or T . It can be shown that
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marginally,

X̄ ∼ N
(
µ,
σ2

m
+ τ 2

)
,

therefore the information about θ in X̄ is Im(θ) = (σ2/m + τ 2)−1. As in Example 3.20,

the complete data information about θ in (X̄, µ) is Ĩ(θ) = τ−2. Now we have convenient

forms for both the exact and approximate information, and it is clear that Im(θ) → Ĩ(θ)

as m→∞.

Example 3.22 (Mixture of Finite Mixtures). Let us consider another example where the

results in this chapter apply to a distribution which does not immediately appear to be an

exponential family finite mixture. Consider the finite mixture of RCB densities

f(t | m,θ) =
s∑
`=1

w`RCB(t | m, ρ`, π`).

where θ = (ρ1, π1, . . . , ρs, πs, w1, . . . , ws−1). The density may be rewritten as a binomial

finite mixture

f(t | m,θ) =
s∑
`=1

w`

2∑
j=1

π`jBin(t | m, ξ`)

=
2s∑
`=1

λ`Bin(t | m, ξ`)

where

ξ` =


(1− ρ `+1

2
)π `+1

2
+ ρ `+1

2
if ` is odd

(1− ρ`/2)π`/2 o.w.
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and

λ` =


w `+1

2
π `+1

2
if ` is odd

w`/2(1− π`/2) o.w.

for ` = 1, . . . , 2s. It is now clear that the approximate information matrix Ĩm(θ) may

be formulated by first forming the approximate information matrix with respect to ϑ =

(ξ1, . . . , ξ2s, λ1, . . . , λ2s−1),

Ĩm(ϑ) = Blockdiag

(
m

ξ1(1− ξ1)
, . . . ,

m

ξ2s(1− ξ2s)
,D−1

λ + λ−1
2s 11T

)

and then using the Jacobian of the transformation θ 7→ ϑ to obtain

Ĩm(θ) =

(
∂θ

∂ϑ

)
Ĩm(ϑ)

(
∂θ

∂ϑ

)T
.

The convergence of Ĩm(ϑ)− Im(ϑ) to zero follows from Theorem 3.11, and the conver-

gence of Ĩm(θ)− Im(θ) to zero follows from Remark 3.7.

Example 3.23 (Weibull Finite Mixture). Consider the Weibull density

f(x | β, λ) =
β

λ

(x
λ

)β−1

e−(x/λ)βI(x > 0),

where β > 0 and λ > 0. For a random variable X with this distribution we will write

X ∼ Weibull(β, λ). Consider the case when λ is known but β is unknown so that {f(· |

β, λ) : β > 0} is not an exponential family. In this case, the score can be written as

∂

∂β
log f(x | β, λ) =

1

β
−
[
1−

(x
λ

)β]
log
(x
λ

)
,
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and the Fisher information is therefore found by computing

I(β) =

∫ ∞
0

{
1

β
−
[
1−

(x
λ

)β]
log
(x
λ

)}2

f(x | β, λ)dx. (3.18)

Although the theory developed in this chapter does not apply because of the departure

from exponential family, let us investigate the convergence of the approximate informa-

tion as we did in the other examples. Suppose X = (X1, . . . , Xm) given Z = ` are a

random sample from Weibull(β`, λ`). Therefore, the marginal density ofX is given by

f(x | θ) =
s∑
`=1

π`f(x | β`, λ`)

=
s∑
`=1

π`

(β`
λ`

)m( m∏
i=1

xi
λ`

)β`−1

exp

{
−

m∑
i=1

(xi/λ`)
β`

] (3.19)

where θ = (β1. . . . , βs, π1, . . . , πs−1). The corresponding score vector contains entries

∂

∂βa
log f(x | θ)

=
πaf(x | βa, λa)

f(x | θ)

[
m

βa
+

m∑
i=1

log xi −m log λa −
m∑
i=1

(
xi
λa

)βa
log

(
xi
λa

)]
,

for a = 1, . . . , s and

∂

∂πa
log f(x | θ) =

f(x | βa, λa)− f(x | βs, λs)
f(x | θ)

for a = 1, . . . , s− 1. The exact information matrix I(θ) can be computed approximately

by Monte Carlo simulation, with the (a, b)th entry for the upper-triangular portion of
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matrix computed as

Iab(θ) ≈



1

L

L∑
r=1

{
∂

∂βa
log f(X(r) | θ)

}{
∂

∂βb
log f(X(r) | θ)

}
,

if a ≤ s and a ≤ b ≤ s

1

L

L∑
r=1

{
∂

∂βa
log f(X(r) | θ)

}{
∂

∂πb−s
log f(X(r) | θ)

}
,

if a ≤ s and b > s

1

L

L∑
r=1

{
∂

∂πa−s
log f(X(r) | θ)

}{
∂

∂πb−s
log f(X(r) | θ)

}
,

if a > s, b > s, and a ≤ b

where X(1), . . . ,X(L) are random samples from (3.19), and the number of repetitions L

is taken to be larger for more accuracy. By symmetry, the lower-triangular entries Iab(θ)

can be taken as Iba(θ) for a ∈ {1, . . . , 2s−1} and b < a. The approximation information

matrix is given by

Ĩ(θ) = Blockdiag(π1F1, . . . , πsFs,Fπ)

where F` is given by multiplying the Weibull(β`, λ`) information (3.18) by m, and Fπ =

D−1
π + π−1

s 11T as usual for finite mixtures.

Consider two scenarios of the form

πWeibull(β1, λ1) + (1− π)Weibull(β2, λ2)

with

• Scenario 1: (β1 = 1, λ1 = 1), (β2 = 4, λ2 = 4), and π = 1/3,

• Scenario 2: (β1 = 1, λ1 = 1), (β2 = 2, λ2 = 2), and π = 1/3.

Figure 3.3 plots the subpopulations and mixed population for each scenario. Table 3.2
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Table 3.2: Results for Weibull mixture. The diagonals Ĩii are given with corresponding
Iii in parentheses. The last column shows Frobenius norm of the matrix difference Ĩ −I.
All entries of I were approximated by Monte Carlo simulation using L = 100,000.

(a) Scenario 1
m Ĩ11 Ĩ22 Ĩ33 ‖Ĩ − I‖F

1 0.6079 (0.3787) 0.0760 (0.0535) 4.5000 (3.2304) 1.3201
2 1.2158 (1.0521) 0.1520 (0.1279) 4.5000 (4.0346) 0.5472
3 1.8237 (1.7571) 0.2280 (0.2112) 4.5000 (4.3218) 0.2397
4 2.4316 (2.3626) 0.3039 (0.2926) 4.5000 (4.4237) 0.1256
5 3.0395 (2.9479) 0.3799 (0.3772) 4.5000 (4.4805) 0.1122
6 3.6474 (3.5409) 0.4559 (0.4494) 4.5000 (4.4914) 0.1097
7 4.2553 (4.3264) 0.5319 (0.5281) 4.5000 (4.5106) 0.0729
8 4.8632 (4.9649) 0.6079 (0.6077) 4.5000 (4.4984) 0.1082
9 5.4711 (5.4920) 0.6839 (0.6854) 4.5000 (4.5032) 0.0257

10 6.0790 (6.0419) 0.7599 (0.7637) 4.5000 (4.5010) 0.0404

(b) Scenario 2
m Ĩ11 Ĩ22 Ĩ33 ‖Ĩ − I‖F

1 0.6079 (0.3919) 0.3039 (0.1696) 4.5000 (1.0642) 3.4731
2 1.2158 (0.8718) 0.6079 (0.3840) 4.5000 (1.7997) 2.8164
3 1.8237 (1.3980) 0.9118 (0.6135) 4.5000 (2.3182) 2.3894
4 2.4316 (1.9380) 1.2158 (0.8703) 4.5000 (2.7546) 2.0388
5 3.0395 (2.5468) 1.5197 (1.1423) 4.5000 (3.0743) 1.7982
· · · · · · · · · · · · · · ·
23 13.9816 (13.7489) 6.9908 (6.8029) 4.5000 (4.4462) 0.3482
24 14.5895 (14.5347) 7.2947 (7.1399) 4.5000 (4.4513) 0.2575
25 15.1974 (15.0696) 7.5987 (7.5052) 4.5000 (4.4704) 0.2163
26 15.8053 (15.9109) 7.9026 (7.8191) 4.5000 (4.4645) 0.1920
27 16.4132 (16.3579) 8.2066 (8.1740) 4.5000 (4.4682) 0.1320

compares the approximate and exact information matrices for these scenarios, respec-

tively. Evaluation of the approximate information matrix requires evaluation of (3.18),

which we compute by numerical integration. The exact information matrix is computed

by Monte Carlo simulation, as mentioned, with L = 100,000. The accuracy is less than

ideal, but enough for our purpose of establishing whether the convergence is taking place.

It is clear that the convergence is taking place, and, as expected, is faster for Scenario 1

where the subpopulations are further apart.
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Figure 3.3: Densities for the Weibull finite mixture under the two scenarios.

3.6 Conclusions

In this chapter, we have extended the approximate information matrix discussed in

Chapter 2 from multinomial finite mixtures to exponential family finite mixtures. The

extension became possible upon noticing that the approximate information matrix is the

complete data information matrix of the response and the latent mixing process. This

makes the approximation applicable to statistical analysis beyond binomial and multino-

mial data.

In the multinomial case, the approximation had originally been justified by its con-

vergence to the exact information matrix as the number of multinomial trials m becomes

large. In the exponential family case, we instead consider sampling m observations from

a common, but unknown, subpopulation. Under this construction, the exact and approxi-

mate information matrices are again seen to converge together as m becomes large. The

proof in the exponential family case is quite different than the one specific to multino-

mial, which is given in full detail in Chapter 2, and does not depend on the properties of

multinomial. Rates of convergence were obtained showing that the convergence is expo-
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nential, but the exponent depends on both m and the similarity between subpopulations.

Convergence is very fast when subpopulations are distinct, but becomes slow as they are

moved closer together. Example 3.19 suggests that the approximation does not converge

to the information matrix of an independent and identically distributed sample of size m

taken from the finite mixture.

There are several interesting questions to consider at this point. The setting of

exponential family finite mixtures covers many cases that may be useful in application,

but our convergence proof requires this assumption (e.g. the Ri(·) and Qi(·) functions

are critical to the proof). Examples 3.20 and 3.21 provide evidence of the convergence

even when the latent mixing process is a continuous distribution rather than the discrete

distribution assumed in the finite mixture. Example 3.23 shows the convergence in a

Weibull finite mixture which does not meet the exponential family assumption. This

suggests that the convergence result can be generalized beyond what has been proved

in this chapter. Finally, it would be of interest to have a reliable method of correcting

accuracy in the approximate information when m is not large or the subpopulations are

not well-separated.
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Chapter 4

Mixture Link Models for Binomial Data with Overdis-

persion

4.1 Introduction

A common problem in the analysis of binomial data using logistic regression occurs

when more variation is present in the data than can be expressed by the model. This can

happen when basic modeling assumptions are not met, and when it does overdispersion

is said to occur. This chapter considers a novel way of handling overdispersion in the

binomial regression setting by linking predictors, through a regression, to the probability

of success in a finite mixture of binomials. Such a mixture presumes J latent binomial

subpopulations with success probabilities µj , for 1, . . . , J , and who compose the overall

population with proportions π = (π1, . . . , πJ). The quantity µTπ = π1µ1 + · · · + πJµJ

can be interpreted as the overall probability of success for a single trial. The finite mixture

has a natural appeal for its ability to model extra variation in a robust way, and the pro-

posed model promises to use this ability to reflect extra variability in estimates for a single

regression over the entire overall population. For example, this would be desirable in the

case of a “primary” subpopulation and a “contamination” subpopulation. Finite mixtures

are also used to accommodate more general departures from simple assumptions, such as

multiple modes. In such cases, it may be desired to study the mean behavior of the overall

population, but to ensure that inference is done with decreased precision.

There are technical challenges that must be overcome in establishing the link to
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µTπ and carrying out even basic computation of the likelihood. This chapter develops

one possible implementation of the model. Initial results show that it provides a good fit

for a real dataset with known overdispersion issues, faring well in comparison to several

other binomial models with extra variation.

The rest of the chapter proceeds as follows. Section 4.2 introduces the binomial

regression problem and discusses some existing approaches to handling extra variation.

Section 4.3 develops the new model, which is termed the Mixture Link distribution. Sec-

tion 4.4 obtains the first few moments of the distribution. In order to work with the

proposed model, it is necessary to compute the vertices of the set which represents the

link to the regression; this is discussed in Section 4.5. Section 4.6 discusses evaluation

of the density, which appears to require numerical approximation except in some simple

cases. Section 4.7 presents plots of the density to give an idea of its ability to capture

extra-binomial variation. Section 4.8 proposes a moment-matched beta approximation

to the random effects density, to reduce the amount of computation needed to evaluate

the density. Illustrative data analyses are presented in Section 4.9, where several bino-

mial models are compared using a goodness-of-fit test as well as AIC and BIC. Finally,

Section 4.10 concludes the chapter.

4.2 Background

Under the usual logistic regression model, Ti successes are observed in mi trials

for i = 1, . . . , n. The probability of success pi for each observation is modeled on a

covariate xi ∈ Rd, which is taken to be fixed. It is assumed that pi = G(xTi β) for

β ∈ Rd and G : R → (0, 1) is a prespecified inverse link function. For this chapter, G

will be taken to be the cumulative distribution function (CDF) for the logistic distribution

G(x) = 1/(1 + e−x), but at no point does the development require this. The model just
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described may be written briefly as

Ti
ind∼ Bin(mi, pi), pi = G(xTi β).

In practice, Ti, xi, and mi are observed, and statistical inference on the parameter β is a

primary objective of analysis. Logistic regression is a special case of the generalized lin-

ear model (GLM) framework (McCullagh and Nelder, 1989), which allows non-normal,

non-continuous outcomes to be modeled as responses to a regression. However, a frequent

problem with GLM is that the data exhibit more variation than the underlying exponential

family distribution is capable of expressing (Morel and Neerchal, 2012). Overdispersion

may be caused, for example, when important covariates have not been included in the re-

gression, or when the implicit assumption of independence within the mi trials has been

violated. The limitation in the amount of modeled variability in the binomial GLM can

be seen by noting the relationship between the mean and variance

E(Ti) = mipi and Var(Ti) = mipi(1− pi);

therefore, the same regression used to model the probabilities of success of the Ti also

must explain the mean and variance.

A simple workaround is to extend the model with a dispersion parameter φ so that

Var(Ti) = φmipi(1 − pi) (Agresti, 2002, Section 4.7). The resulting model is referred

to as quasi-likelihood because it no longer corresponds to a true distribution. For longi-

tudinal data, a popular quasi-likelihood method is the generalized estimating equations

(GEE) developed by Liang and Zeger (1986). GEE proposes inference on β to be based

on a score-like equation and allows the analyst to assume a working correlation structure

to induce dependence for observations within a subject. This idea may be used when un-

grouped Bernoulli trials of a binomial experiment are observed. GEE has some desirable

properties, such as consistency even under misspecification of the working correlation;
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however it may not be based on a real likelihood.

There are also a variety of likelihood-based models that can be used to induce extra

variation; we will mention several here. The zero-inflated binomial (ZIB) distribution

discussed by Hall (2000),

P(T = t | m, p, φ) = φI(t = 0) + (1− φ)Bin(t | m, p),

assumes a latent process that generates a zero with probability φ and a binomial random

variable with probability 1 − φ. Similarly, any of the support values 0, 1, . . . ,m may be

selected by the analyst to be inflated. The random-clumped binomial (RCB) distribution

(Morel and Nagaraj, 1993) may be used when the inflated value is not known ahead

of time and is considered to be drawn randomly. An RCB distributed random variable

T = NY + (X | N) is obtained using

Y ∼ Ber(p), N ∼ Bin(m,φ), (X | N) ∼ Bin(m−N, p),

where Y represents success/failure of a leader, N is the number of trials that follows the

leader, and (X | N) are remaining trials that are selected independently. Here, p ∈ (0, 1)

is interpreted as the success probability for the trials, and φ ∈ (0, 1) is the probability

of following the leader. Perhaps the most popular binomial distribution supporting extra

variation is beta-binomial (BB), which assumes a hierarchy,

T | µ ∼ Bin(m,µ), µ ∼ Beta(α, β),

where the probability of success is drawn from a beta distribution. BB may be reparam-

eterized, as noted in (Morel and Neerchal, 2012, Section 4.2) and (Prentice, 1986) for
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example, using

α = pφ−1(1− φ) and β = (1− p)φ−1(1− φ)

⇐⇒ p =
α

α + β
and φ =

1

α + β + 1
,

so that p ≡ E(µ) ∈ (0, 1) can be interpreted as a probability of success and

Var(T ) = mp(1− p){1 + φ(m− 1)}.

For the ZIB, RCB, and BB distributions as stated here, φ ∈ (0, 1) is seen as an overdisper-

sion parameter with respect to the binomial distribution where the limiting case of φ = 0

corresponds to “no overdispersion”. Although ZIB, RCB, and BB are not exponential

families, and therefore do not fall into the classical GLM framework, regressions may be

linked to p and/or φ, and inference for β may be carried out through the linked likelihood.

Adding random effects to the regression model of a GLM is a flexible way to model

extra variation between observations or to group observations that naturally belong to the

same cluster (c.f. Agresti, 2002; Morel and Neerchal, 2012). However, because random

effects are unobserved and manifest themselves as integrals in the likelihood, computation

quickly becomes difficult as random effect structures are allowed to become more elabo-

rate. A compromise between flexibility and computation is found in the random intercept

model, where only a random intercept is assumed. Logistic regression with a random in-

tercept has been considered by Follmann and Lambert (1989) and Aitkin (1996), among

others, who use nonparametric maximum likelihood (NPMLE) to avoid making assump-

tions about the distribution of the random intercept.

Finite mixture distributions are often used to model the situation of multiple latent
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subpopulations. In the basic finite mixture of binomials,

f(t | m,θ) =
J∑
j=1

πjBin(t | m,µj), (4.1)

it is assumed that there are J subpopulations, and a latent process Z is selecting from the

labels (1, . . . , J) with corresponding probabilities (π1, . . . , πJ). The finite mixture (4.1)

can be extended to a finite mixture of regressions by linking regressions

µj = G(xTβj), for j = 1, . . . , J.

This idea is discussed in Frühwirth-Schnatter (2006), which also considers distributions

other than simple discrete for the mixing process Z.

The remainder of this chapter presents Mixture Link: a completely likelihood-based

binomial model for extra variation. Mixture Link models a binomial outcome with a finite

mixture, and links a regression to the mixture probability of success. The finite mixture is

used to handle heterogeneity in a robust way, but unlike the finite mixture of regressions

model the interest is in a single regression for the overall population. Therefore, the finite

mixture of regressions can be thought of as “conditional modeling” with respect to latent

subpopulations, while Mixture Link is “marginal modeling” on the entire population, with

built-in tolerance for heterogeneity across subpopulations.

4.3 Model Formulation

Consider a random variable T following the finite mixture of binomials distribution

(4.1), which we will denote as T ∼ BinMix(m,µ,π). Without further restriction, the

component probabilities of success µ = (µ1, . . . , µJ) naturally lie within the rectangle

[0, 1]J , and the subpopulation proportions π = (π1, . . . , πJ) are within the J-dimensional
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probability simplex SJ = {µ ∈ [0, 1]J :
∑J

j=1 µj = 1}. Notice that

E(T ) =
J∑
j=1

πjmµj = mµTπ (4.2)

where µTπ is the mixture probability of success. Analogously to logistic regression

under the GLM framework, our goal is to link the regression xTβ to the finite mixture by

enforcing the constraint

µTπ = p, where p = G(xTβ).

The space of all µ that honors the link is then

A(p,π) = {µ ∈ [0, 1]J : µTπ = p}; (4.3)

when there is no confusion, we will write A as shorthand. We will often write the Mix-

ture Link model in terms of p rather than β, with the understanding that the regression

p = G(xTβ) can be linked when desired. Although Mixture Link was developed with

regression in mind, the distribution is well-defined without the link.

Consider an independent sample

Ti
ind∼ BinMix(mi,µi,π), µi ∈ Ai, i = 1, . . . , n,

where Ai = A(pi,π) and pi = G(xTi β). Here Ai and µi vary with i to reflect that obser-

vations may have distinct covariates xi. We assume that π is common to all observations.

When µ1, . . . ,µn are treated as fixed and unknown quantities, taking a maximum likeli-
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hood approach would mean maximizing

n∏
i=1

{
J∑
j=1

πjBin(ti | mi, µij)

}
, subject to γ(µ1, . . . ,µn,π) = Xβ, (4.4)

γ(µ1, . . . ,µn,π) =


g(µT1π)

...

g(µTnπ)

 : n× 1, and X =


xT1
...

xTn

 : n× d,

where g = G−1. The maximum likelihood estimator subject to constraints has been

studied, for example, in (Aitchison and Silvey, 1958). In (4.4), the parameter β only

enters the optimization problem through the constraint, which suggests a that a profile

likelihood approach such as

Q(β) = sup
µ1,...,µn,π

{logL(θ) : γ(µ1, . . . ,µn,π) = Xβ} , or (4.5)

Q(β,π) = sup
µ1,...,µn

{logL(θ) : γ(µ1, . . . ,µn,π) = Xβ} , (4.6)

may be more natural to consider. This removes the nuisance µi variables from consider-

ation by optimizing over them. However, the overall optimization problem is still on the

space

[0, 1]J × · · · × [0, 1]J︸ ︷︷ ︸
n

×SJ × Rd,

whose dimension is increasing with the sample size n due to the nuisance parameters µi

for i = 1, . . . , n, This is generally not a desirable quality for a model.

Instead of taking on the optimization problem (4.4), we consider a hierarchical

model where the µi are unobservable random effects. Hence, the µi will be probabilities

of success for a finite mixture of J binomials, permitted to vary among observations by

the assumption of being drawn from a distribution onAi ⊆ [0, 1]J , where thereAi support
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the common objective of linking the desired regression to the finite mixture likelihood.

The effects must be integrated out (rather than optimized over, as in profile likelihood)

to obtain the likelihood of the observed data. This can be contrasted to the profile opti-

mization which removes the µi from consideration by an inner optimization. The tradeoff

between having too many fixed nuisance parameters vs. unobservable random effects is

traditionally seen in linear mixed models (McCulloch et al., 2008). A first question for

the present case is to determine a distribution for the random effects. A simple result will

give one possible answer to this question.

Lemma 4.1. For a fixed p and π, the set A(p,π) as defined in (4.3) is bounded and

convex.

Proof. Notice that

A(p,π) = [0, 1]J ∩ {µ ∈ RJ : µTπ = G(xTβ)},

which is an intersection of two convex sets, a rectangle and a hyperplane, in RJ . Therefore

A(p,π) itself is convex. It is also bounded because A(p,π) ⊆ [0, 1]J .

Because any given Ai is bounded and convex, we can find vertices v(i)
1 , . . . ,v

(i)
ki
∈

RJ such that Ai is equivalent to their convex hull, defined as

conv(v
(i)
1 , . . . ,v

(i)
ki

) =
{ ki∑

`=1

λ`v
(i)
` : λ ∈ Ski

}
=
{
V (i)λ : λ ∈ Ski

}
, (4.7)

where Ski is the ki-dimensional probability simplex and V (i) = (v
(i)
1 · · ·v

(i)
ki

) ∈ RJ×ki .

Therefore, any point in Ai can be expressed as a convex combination of the vertices. A

proof that this decomposition is possible is given, for example, in (Bazaraa et al., 2009,

Theorem 2.1). Vertices ofAi are also extreme points ofAi, whose definition is as follows.

Definition 4.2 (Extreme Point of a Convex Set). A point x in a convex set S is called an

extreme point of S if it cannot be written as a convex combination of other points in S.
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That is,

x = λy + (1− λ)z for some λ ∈ [0, 1] =⇒ x = y = z.

Note that V (i) may be different for each observation when the set Ai depends on a co-

variate xi. The number of vertices ki may also vary with each observation. It is assumed

that ki is chosen to be the minimum number of vertices so that (4.7) holds; i.e. all v(i)
` are

extreme points of Ai and all v(i)
` are distinct points.

Now a natural way to place a distribution on the set A is to let λ ∼ Dirichletk(α),

whose density is

f(λ | α) =
λα1−1

1 · · ·λαk−1
k

B(α)
· I(λ ∈ Sk), where B(α) =

Γ(α1) · · ·Γ(αk)

Γ(α1 + · · ·+ αk)
.

Danaher et al. (2012) recently proposed priors based on the Minkowski-Weyl decomposi-

tion to enforce (biologically motivated) polyhedral constraints for parameters in Bayesian

analysis. Recall that a direction of a polyhedron P is a vector ξ such that µ+ δξ ∈ P for

all δ > 0, for any µ ∈ P . The Minkowski-Weyl decomposition says that

P = conv(v1, . . . ,vk) + cone(ξ1, . . . , ξh),

where cone(ξ1, . . . , ξh) =

{
h∑
`=1

λ`ξ` : λ ≥ 0,

}
,

for extreme points v` and extreme directions ξ` of P . Danaher et al. (2012) propose

a Dirichlet prior distribution for the simplex between the extreme points, while gamma

priors are proposed for the positive coefficients on the extreme directions. Because the

sets Ai are bounded polyhedra for the present problem, no directions are contained within

the set and we need only consider the extreme points.

Figure 4.1 shows an example of the set A(p,π) for J = 2 and J = 3, along with

a random sample taken from the set assuming a Dirichletk(1, . . . , 1) distribution. When
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(a) (b)

Figure 4.1: A sample drawn from A: (a) n = 100 with J = 2, π = (3
4
, 1

4
), p = 2

3
, and (b)

n = 300 with J = 3, π = (1
4
, 1

2
, 1

4
), p = 2

3
.

J = 3, Figure 4.2 shows how the set A(p,π) changes as p is varied. Note that the number

of vertices k may change, and so may the placement of the hyperplane segment. It is clear

that for J = 3 it is possible for k to take on values at least in {3, 4, 5, 6}, and certainly

k = J need not hold.

We can now write the Mixture Link model as the hierarchy

Ti | µi,π
ind∼ BinMix(mi,µi,π),

µi = V (i)λ(i), where V (i) = (v
(i)
1 · · ·v

(i)
ki

) are vertices of A(pi,π),

λ(i) ind∼ Dirichletki(α
(i)). (4.8)

Notice that the dimension of α(i) = (α
(i)
1 , . . . , α

(i)
ki

) may vary between observations, de-

pending on π and pi. Because our main interest is the regression case where p1, . . . , pn

are not equal, we make the further assumption that α(i) = κ1 where 1 = (1, . . . , 1) and

κ > 0. The Dirichlet(κ1) distribution is sometimes referred to as Symmetric Dirichlet.

There are also identifiability issues in letting the components of α(i) vary because the

vertices in V (i) are not strictly ordered, therefore it is difficult to maintain a correspon-

dence between v(i)
` and α(i)

` . Figure 4.3 shows Dirichlet distributions plotted for several

settings of κ when J = 3. Notice that κ = 1 corresponds to the uniform distribution
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(a) π = (1
4 ,

1
2 ,

1
4). (b) π = (1

3 ,
1
3 ,

1
3).

Figure 4.2: The set {µ ∈ [0, 1]3 : µ1π1 + µ2π2 + µ3π3 = p} visualized with two different
settings of π. In each case, p ∈ {1

8
, 1

4
, 1

2
, 3

4
} is shown (from front to back).

of λ(i) on the simplex (and furthermore to a uniform distribution of µi on Ai), while

0 < κ < 1 results in more density focused toward the vertices than the interior, and κ > 1

yields more density in the interior of the simplex. The hierarchy (4.8) is parameterized by

θ = (p,π, κ) ∈ R1+(J−1)+1 if Ti are taken to be independent and identically distributed,

or θ = (β,π, κ) ∈ Rd+(J−1)+1 in the case of a regression. In a frequentist analysis, θ

will be a fixed but unknown parameter. A Bayesian analysis would put a prior on β or p,

the main parameters of interest, and perhaps on π and κ as well. Denote the elements of

V as vj`, vTj. as the jth row, and v.` as the `th column. The Mixture Link density is given

by

f(t | m, p,π, κ) =

∫ J∑
j=1

πj

{(
m

t

)
µtj(1− µj)m−t

}
· fA(µ)dµ

=

(
m

t

) J∑
j=1

πj

∫ uj

`j

wt(1− w)m−t · fA(j)(w)dw (4.9)

where fA(µ) is the joint density of µ = V λ on the set A(p,π), fA(j)(w) is the marginal
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Dirichlet Density for k = 3 and κ = 2
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Dirichlet Density for k = 3 and κ = 1
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Figure 4.3: Dirichlet3(λ | κ1) density for several settings of κ. Only λ1 and λ2 are
plotted, as λ3 = 1− λ1 − λ2 is redundant.
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density of µj = vTj.λ. The limits of integration are

`j = min{vj1, . . . , vjk} and uj = max{vj1, . . . , vjk} for j = 1, . . . , J.

The notation T ∼ MixLinkJ(mi, p,π, κ) will be used to say that T is drawn from this

distribution. The joint likelihood of the sample Ti
ind∼ MixLinkJ(mi, p,π, κ) for i =

1, . . . , n is then

L(θ) =
n∏
i=1

{(
mi

ti

) J∑
j=1

πj

∫
wti(1− w)mi−ti · f

A
(j)
i

(w)dw

}
. (4.10)

Note that in Chapter 3, an important issue in the finite mixture was the distinguishability

between subpopulations. In the binomial mixture case, this amounts to similarity between

the elements of µ = (µ1, . . . , µJ). However, Mixture Link integrates µ out according to

the density fA; hence, the similarity of the elements does not affect the distribution except

in an aggregated sense.

4.4 Expectation and Variance under Mixture Link Model

It is customary to compute moments such as the expectation, variance, and moment-

generating function when introducing a probability distribution. In the case of Mixture

Link, the calculations will become useful in approximating the density, as discussed in

Section 4.8. Suppose T ∼ MixLinkJ(m, p,π, κ). To compute expectations of T , it is
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helpful to consider the complete data distribution

T | µ,π, (Z = j) ∼ Binomial(m,µj),

Z ∼ Discrete(1, . . . , J ;π),

µ = V λ, where V = (v1 · · ·vk) are vertices of A,

λ ∼ Dirichletk(κ1),

where λ and Z are independently distributed. It can be verified that this is a complete data

model for Mixture Link by integrating out Z and λ. Now, since T ∼ Binomial(m,µj)

given Z and λ, we have

E(T ) = EZ,λ[E(T | Z,λ)]

= EZ,λ

[
J∑
j=1

I(Z = j)mµj

]

= m
J∑
j=1

πj E(µj)

= m
J∑
j=1

πje
T
j V E(λ)

= m
J∑
j=1

πje
T
j V (k−11)

= mk−1

J∑
j=1

πjv
T
j.1

= m

J∑
j=1

πj v̄j.

where v̄j. denotes the mean of the elements of vj., and recalling that forD ∼ Dirichletk(α),

E(D) = α/α0 where α0 =
∑k

`=1 α`. Notice that E(T ) is free of κ, and is a function of

π and p as linear combination of the vertices. We may also write E(T ) = mk−1πTV 1.
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Now, computing the second moment of T ,

E(T 2) = EZ,λ[E(T 2 | Z,λ)]

= EZ,λ

{
J∑
j=1

I(Z = j)
[
mµj(1− µj) +m2µ2

j

]}

=
J∑
j=1

πj
[
mE(µj)−mE(µ2

j) +m2 E(µ2
j)
]

= m
J∑
j=1

πj E(µj) +m(m− 1)
J∑
j=1

πj E(µ2
j)

= E(T ) +m(m− 1)
J∑
j=1

πj E(µ2
j).

Now we have

E(µ2
j) = eTj V E(λλT )V Tej

= eTj V
[
Var(λ) + E(λ) E(λT )

]
V Tej

= vTj.

[
I + κ11T

k(1 + κk)

]
vj.

=
vTj.vj. + κk2v̄2

j.

k(1 + κk)
.

We have used the fact that

Var(λ) =
α0 Diag(α)−ααT

α2
0(α0 + 1)

=
kκ2I − κ211T

k2κ2(kκ+ 1)
=

kI − 11T

k2(kκ+ 1)
, and

E(λλT ) = Var(λ) + E(λ) E(λT ) =
α0 Diag(α)−ααT

α2
0(α0 + 1)

+
ααT

α2
0

=
Diag(α) +ααT

α0(α0 + 1)
.
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Therefore we obtain the second moment and second factorial moment

E(T 2) = E(T ) +m(m− 1)
J∑
j=1

πj
vTj.vj. + κk2v̄2

j.

k(1 + κk)
,

E

[
T (T − 1)

m(m− 1)

]
=

J∑
j=1

πj
vTj.vj. + κk2v̄2

j.

k(1 + κk)
,

and the variance

Var(T ) = E(T 2)− E2(T )

= m
J∑
j=1

πj v̄j. +m(m− 1)
J∑
j=1

πj
vTj.vj. + κ(kv̄j.)

2

k(1 + κk)
−

(
m

J∑
j=1

πj v̄j.

)2

= m
J∑
j=1

πj v̄j.

(
1−m

J∑
j=1

πj v̄j.

)
+m(m− 1)

J∑
j=1

πj
vTj.vj. + κ(kv̄j.)

2

k(1 + κk)
.

(4.11)

Notice that as κ → ∞, Var(vTj.λ) → 0, therefore the distribution of vTj.λ approaches a

point mass at E(vTj.λ) = v̄j. and the Mixture Link distribution becomes

f(t | m, p,π) =

(
m

t

) J∑
j=1

πj v̄
t
j.(1− v̄j.)m−t, (4.12)

Therefore, as κ → ∞, the Mixture Link density becomes a finite mixture of binomials

with m trials whose jth probability of success v̄j. is the mean of the jth coordinate of the

k vertices of A(p,π). In this case the variance becomes

Var(T ) = m
J∑
j=1

πj v̄j.

(
1−m

J∑
j=1

πj v̄j.

)
+m(m− 1)

J∑
j=1

πj v̄
2
j..
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Also notice that as κ→ 0,

Var(T )→ m
J∑
j=1

πj v̄j.

(
1−m

J∑
j=1

πj v̄j.

)
+m(m− 1)

J∑
j=1

πj
vTj.vj.

k
.

The moment generating function (MGF) of T can be obtained as an integral by noticing

that

E(eγT | µ, Z = j) = [µje
γ + 1− µj]m

is the MGF of binomial. Hence

φT (γ) = Eµ{EZ [E(eγT | µ, Z)}

= Eµ

{
J∑
j=1

πj[µje
γ + 1− µj]m

}

=
J∑
j=1

πj

∫ uj

`j

[weγ + 1− w]mfAj(w)dw

is the MGF of T .

4.5 Finding the vertices of A

Computation of the Mixture Link density and its moments depends on the vertices

of the set A. In this section we will see how the vertices can be determined; first for

the simple case when J = 2, then extending to J > 2. For the case J = 2, it is easy

to identify the vertices of A graphically by following the line to the points at which it

intersects the unit rectangle. An illustration is given in Figure 4.4, and the result is stated

now as a lemma.

Lemma 4.3. Suppose J = 2 and A has two distinct vertices v1,v2. Then the vertices are
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given by

v1 =


(

1
π1
p, 0
)
, if 1

π1
p ≤ 1(

1, 1
π2

(p− π1)
)
, otherwise,

v2 =


(

1
π1

(p− π2), 1
)
, if 1

π1
(p− π2) ≥ 0(

0, 1
π2
p
)
, otherwise,

where π2 = 1− π1.

Proof. Using µ1π1 + µ2π2 = p we have

µ1 =
1

π1

(p− µ2π2) and µ2 =
1

π2

(p− µ1π1), (4.13)

where µ1 ∈ [0, 1] and µ2 ∈ [0, 1] must hold. To obtain v1, take µ1 as large as possible

noting expressions (4.13). If µ1 = 1 is a valid solution (i.e. a point in A), then µ2 =

1
π1

(p− π2). Otherwise take µ2 as small as possible to maximize µ1; this yields µ1 = 1
π1
p

and µ2 = 0. A similar argument taking µ1 as small as possible yields v2.

We may also locate the vertices (v1,v2) systematically in the following way. Fix µ2

at both 0 and 1, and solve for µ1 so that (µ1, µ2) is on the hyperplane. Now fix µ1 at

both 0 and 1, and solve for µ2 so that (µ1, µ2) is on the hyperplane. For all four points

µ = (µ1, µ2), if µ ∈ A, then it is a vertex of A. We will see later that this idea generalizes

to J > 2. Note that it is also possible to have k = 1 vertices when J = 2. For example, if

π = (1/2, 1/2) and p = 1, then µ1 = 1, µ2 = 1 is the only solution to µ1π1 + µ2π2 = p

in [0, 1]2, and therefore A is a singleton set.

For the general (J > 2) case, the following lemma characterizes points in A which

need to be considered when searching for the extreme points.

Lemma 4.4 (Characterization of Extreme Points of A). Suppose v = (v1, . . . , vJ) is a

point in A with two or more components vj /∈ {0, 1}. Then v is not an extreme point of
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●

●

Example of set A with J=2

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v1

v2

Figure 4.4: Example set A with π = (11
20
, 9

20
) and p = 1

2
. The vertices are located at

v1 = (10
11
, 0) and v2 = ( 1

11
, 1).

A.

Proof. Suppose WLOG that v ∈ A with v1 ∈ (0, 1) and v2 ∈ (0, 1). We have that

vTπ = p ⇐⇒ v1π1 + v2π2 + (v3π3 + · · ·+ vJπJ) = p

⇐⇒ v1π1 + v2π2 = p∗,

where p∗ = p− (v3π3 + · · ·+ vJπJ). We can now use Lemma 4.3 to obtain vertices, say

a and b, of the line segment

L =
{

(µ1, µ2, v3, . . . , vJ) ∈ [0, 1]J : µ1π1 + µ2π2 = p∗
}
,
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where (v3, . . . , vJ) are held fixed and only (µ1, µ2) may vary. Explicitly, we have

a =


(

1
π1
p∗, 0, v3, . . . , vJ

)
, if 1

π1
p∗ ≤ 1(

1, 1
π2

(p∗ − π1), v3, . . . , vJ

)
, otherwise,

b =


(

1
π1

(p∗ − π2), 1, v3, . . . , vJ

)
, if 1

π1
(p∗ − π2) ≥ 0(

0, 1
π2
p∗, v3, . . . , vJ

)
, otherwise.

By construction, we have that v is in the line segment between a and b, with a 6= b.

Furthermore since L ⊆ A, we have that a, b ∈ A. Therefore, v can not be an extreme

point of A.

Lemma 4.4 suggests that in searching for extreme points, we must only consider

those with at most one component not equal to 0 or 1. This can be used to formulate a

simple algorithm. The idea is as follows:

• Consider the jth dimension, which is the one we will permit to take values in [0, 1]

other than {0, 1}.

• For (µ1, . . . , µj−1, µj+1, . . . , µJ) ∈ {0, 1}J−1, find µ∗j that solves µTπ = p.

• The point (µ1, . . . , µj−1, µ
∗
j , µj+1, . . . , µJ) ∈ {0, 1}J is a vertex of A if and only if

it is in A.

The procedure is given formally as Algorithm 1. Notice that it checks J ·2J−1 points, and

therefore becomes impractical for large J . It would be useful if some parts of the search

could be excluded from consideration.

Remark 4.5 (Vertex finding in general polyhedra). Bazaraa et al. (2009, Chapter 2) dis-

cusses vertex identification for the general polyhedron

P = {x ∈ Rn : Cx ≤ b, x ≥ 0},
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where C is a m× n matrix and b is a m× 1 vector. Denote cTi as the ith row of C. There

are m + n total restrictions in P : cT1 x ≤ b1, . . . , cTmx ≤ bm and x1 ≥ 0, . . . , xn ≥ 0.

The vertices can be characterized as follows: construct an n × n matrix C̃ from n of the

m + n rows of C, and a vector b̃ out of the corresponding entries of b. The vertices v

of P occur when C̃ is nonsingular, so that the restrictions are linearly independent, and

when v = C̃−1b̃ is a point in P . A simple algorithm is therefore to inspect all
(
m+n
n

)
combinations of restrictions, and for each combination, to form C̃ and b̃ and save all

points where C̃−1b̃ ∈ P .

For the Mixture Link problem, we may rewrite A as

A = {µ ∈ [0, 1]J : µTπ = p}

= {µ ∈ RJ : µ ≥ 0,µ ≤ 1,µTπ ≤ p,µTπ ≥ p}

= {µ ∈ RJ : Cµ ≤ b,µ ≥ 0},

where

C =


I

πT

−πT

 ∈ R(J+2)×J , and b =


1

p

−p

 ∈ R(J+2)×1.

To carry out the general vertex finding algorithm, we must inspect
(

2J+2
J

)
combinations

of restrictions. Table 4.1 compares this to the number of candidate vertices considered by

Algorithm 1. The general vertex finding method requires significantly more steps, and the

steps are more computationally involved: each requiring a check for singularity and pos-

sibly a linear solve. Therefore, Algorithm 1 provides a huge computational improvement

when J is not very small. We expect that J = 12 mixture components (the last entry in

the table) is too many to use in practice. However, even for J = 3 or J = 4, the savings

in computation would give a noticeable improvement when the density must be computed
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many times, such as in an iterative algorithm for estimation. More involved methods for

vertex finding in polyhedra have been investigated in the mathematics literature; a survey

is given in (Matheiss and Rubin, 1980).

Remark 4.6 (Differentiability of the vertices). It is clear that the vertices of A(p,π)

are not differentiable over all p and π. The number of vertices k can change so that a

particular vertex may suddenly appear or disappear as p and π vary. Even in the simple

case where k = 2 is fixed, the vertices are not differentiable at p,π where p = π1 or

p = π2; this can be verified using the explicit expressions in Lemma 4.3.

Algorithm 1 Find vertices of the set A(p,π).
function FINDVERTICES(p,π)
V ← ∅
for j = 1, . . . , J do

if πj > 0 then
for all µ−j ∈ {0, 1}J−1 do

µ∗j ← 1
πj

[
p− µT−jπ−j

]
v∗ ← (µ1, . . . , µj−1, µ

∗
j , µj+1, . . . , µJ)

if v∗ ∈ A then
V ← V ∪ v∗

return V

4.6 Computing the Mixture Link Density

A first step in making use of the Mixture Link model is being able to compute the

density efficiently and in turn to compute the likelihood. One required step, given p and

π, is to compute the vertices v1, . . . ,vk of A(p,π) as discussed previously. Next, the

density (4.9) involves an integration over a random variable which is a linear combination

of a Dirichlet distributed random vector.

Provost and Cheong (2000) note that the distribution of a linear combination of

a Dirichlet random vector is closely related to a well studied distribution — the linear

combination of chi-square random variables. To see this, recall that if Xj
ind∼ χ2

vj
for
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Table 4.1: Number of steps required for finding vertices ofA in dimension J . The column
Polyhedron denotes the algorithm discussed in Remark 4.5 for general polyhedra which
requires

(
2J+2
J

)
steps. The column FindVertices denotes Algorithm 1 which requires J ·

2J−1 steps.

J Polyhedron FindVertices
1 4 1
2 15 4
3 56 12
4 210 32
5 792 80
6 3,003 192
7 11,440 448
8 43,758 1,024
9 167,960 2,304

10 646,646 5,120
11 2,496,144 11,264
12 9,657,700 24,576

j = 1, . . . , k, then

(
X1∑k
j=1 Xj

, . . . ,
Xk∑k
j=1 Xj

)
∼ Dirichletk(α)

where αj = vj/2. Details are given in (Kotz et al., 2000), and are also reproduced

in Appendix A. Now if λ ∼ Dirichletk(α), we may write the distribution of a linear

combination cTλ as

FcTλ(x) = P

(
k∑
j=1

cjλj ≤ x

)
= P

(
k∑
j=1

cj
Xj∑k
`=1 X`

≤ x

)
= P

(
k∑
j=1

(cj − x)Xj ≤ 0

)
.

(4.14)

Provost and Cheong show how this probability can be computed through an expression

given by Imhof (1961). Imhof obtains the CDF of a linear combination of chi-squares

bTX using the inversion formula for the CDF

F (x) =
1

2
− 1

π

∫ ∞
0

t−1Im{e−itxφ(t)}dt,
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and the characteristic function

φbTX(t) =
k∏
j=1

(1− 2bjit)
−vj/2,

where Im(z) denotes the imaginary part of z. The exact expression

P

(
k∑
j=1

bjXj ≤ x

)
=

1

2
− 1

π

∫ ∞
0

sin(1
2

∑k
j=1 vj arctan(bju)− 1

2
xu)

u
∏k

j=1(1 + b2
ju

2)vj/4
du (4.15)

is obtained, along with error bounds for numerical computation of the integral. Expres-

sion (4.15) may be combined with (4.14) to give

FcTλ(x) =
1

2
− 1

π

∫ ∞
0

sin(
∑k

j=1 αj arctan((cj − x)u))

u
∏k

j=1(1 + (cj − x)2u2)αj/2
du. (4.16)

as the CDF for cTλ. For this work, we compute (4.16) using the imhof function from

the CompQuadForm package (Duchesne and Micheaux, 2010) for R, and then evaluate

the density of cTλ by numerical differentiation

fcTλ(x) =
FcTλ(x+ ε)− FcTλ(x)

ε

for a small ε > 0. In this way, the density of µj = eTj V λ is obtained, where ej represents

the jth column of an identity matrix of the appropriate dimension. We use integrate

to compute the Mixture Link density (4.9), where the integral is taken with respect to the

numerically computed density fA(µj). Hence, two one-dimensional numerical integra-

tions and a numerical differentiation are used for a single evaluation of the Mixture Link

density. Although this straightforward method provides a general way to compute the

density, we have found it to be unacceptably slow for applications involving data analysis

or simulation

As briefly mentioned by Provost and Cheong (2000), in the case of k = 2 vertices
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there is again a closed form for the density. Suppose Xj
ind∼ χ2

vj
for j = 1, 2 and notice

that

Z =
a1X1 + a2X2

X1 +X2

=
a1 − a2 + a2 + a2X2/X1

1 +X2/X1

=
a1 − a2

1 +X2/X1

+ a2 =
a1 − a2

1 + v2
v1
F

+ a2

⇐⇒ F =
v1

v2

(
a1 − a2

Z − a2

− 1

)

where F = X1/v1
X2/v2

follows an F -distribution with degrees of freedom (v1, v2). Notice

that F ∈ (0,∞) implies that Z ∈ (a2, a1), assuming that a2 < a1. The case a1 = a2

need not be considered since Z becomes a point mass at a1 = a2. The Jacobian of this

transformation is given by

∂F

∂Z
= −v1

v2

a1 − a2

(Z − a2)2
,

and therefore the density of Z can be written as

fZ(z) = fF (F ) · |∂F/∂Z| = (v2/v1)v2/2

B
(
v2
2
, v1

2

) F v2/2−1

(
1 +

v2

v1

F

)−v1/2−v2/2 [v1

v2

a2 − a1

(z − a2)2

]
=

(a1 − z)v2/2−1(z − a2)v1/2−1(a1 − a2)1−v1/2−v2/2

B
(
v2
2
, v1

2

) .

Therefore, when λ ∼ Dirichlet2(α), the density for c1λ1 + c2λ2 is

fcTλ(z) =
(c1 − z)α2−1(z − c2)α1−1(c1 − c2)1−α1−α2

B(α2, α1)
. (4.17)

Closed form expressions for the density when k = 3 and k = 4 are also discussed by

Provost and Cheong (2000), but they are progressively less convenient to compute.

We have focused on obtaining the linear combination of Dirichlet density, but our

real objective is the density of the Mixture Link distribution itself. Obtaining a closed

form the Mixture Link density is possible in some simple situations.
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Trivial case: m = 1. It should first be noted that the Bernoulli Mixture Link model,

obtained when m = 1, simplifies in a trivial way since,

f(t | m, p,π, κ) =

∫ { J∑
j=1

πjµ
t
j(1− µj)1−t

}
fA(µ)dµ

=


∫
µTπfA(µj)dµ = p, if t = 1,∫
(1− µTπ)fA(µj)dµ = 1− p if t = 0.

= pt(1− p)1−t.

Therefore, in this case, Mixture Link is equivalent to a usual Bernoulli distribution. How-

ever, if m ≥ 2 so that there is more than one Bernoulli trial, the two models no longer

coincide. This result suggests that extra variation modeled by Mixture Link comes from

the interdependence among the m trials.

Simple case: J = 2 and κ = 1. In the case J = 2, the set A has either one or two

vertices. When there is only one vertex, A = {µ} is a singleton set, and we immediately

obtain the finite mixture density

f(t | m,θ) =
J∑
j=1

πj

(
m

t

)
µtj(1− µj)m−t

evaluated at µ. Suppose now that there are two vertices, say v1 =

v11

v12

 and v2 =

v21

v22

. Then we have

A = {λv1 + (1− λ)v2 : λ ∈ [0, 1]}

144



so that any µ ∈ A can be written as

µ1

µ2

 = λv1 + (1− λ)v2 =

λv11 + (1− λ)v21

λv12 + (1− λ)v22

 .

We may then write the density as

f(t | m,θ) =

∫ { 2∑
j=1

(
m

t

)
πjµ

t
j(1− µj)m−t

}
· fA(µj)dµj

=

(
m

t

) 2∑
j=1

πj

∫ 1

0

[λv1j + (1− λ)v2j]
t[1− (λv1j + (1− λ)v2j)]

m−tdλ,

(4.18)

where λ ∼ U(0, 1). Now consider the transformation of the integrals in (4.18) using

w = λv1j + (1− λ)v2j which gives

f(t | m,θ) =

(
m

t

) 2∑
j=1

πj
1

v1j − v2j

∫ v1j

v2j

wt(1− w)m−tdw

=

(
m

t

) 2∑
j=1

πj
Bv1j(t+ 1,m− t+ 1)− Bv2j(t+ 1,m− t+ 1)

v1j − v2j

, (4.19)

where Bx(α, β) =
∫ x

0
wα−1(1−w)β−1dw is the incomplete beta function. The expression

(4.19) is routine to compute with statistical software once the two vertices have been

determined.

Remark 4.7 (Identifiability). There is a natural invariance in the Mixture Link density

to the order of the elements of π. Consider evaluating (4.19) with a fixed t and m using

π = (π, 1 − π) and π = (1 − π, π); the vertices v1 and v2 switch roles in the two

representations, but the density (4.19) is invariant to the change. For the general Mixture
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Link density,

f(t | m, p,π, κ) =

(
m

t

) J∑
j=1

πj

∫ uj

`j

wt(1− w)m−t · fA(j)(w)dw,

suppose that πj and πj′ are swapped for some j, j′ ∈ {1, . . . , J}. Recall that fA(j) is the

density of vTj.λ, and that V = (v1, . . . ,vk) are solutions to

µ1π1 + · · ·+ µJπJ = p, 0 ≤ µj ≤ 1.

Therefore when πj swaps with πj′ , the jth and j′th element of each v` are swapped and

therefore the distributions of vTj.λ and vTj′.λ swap. It also follows that (`j, uj) swaps with

(`j′ , uj′) because `j and uj are the smallest and largest element of vj.. Therefore, the

general Mixture Link density is invariant to permutation of the elements of π. This is

similar to the label switching problem in the usual finite mixture (McLachlan and Peel,

2000), where the concept of identifiability is relaxed slightly to allow components of the

mixture to be permuted. We can add the constraint

π1 < · · · < πJ

to avoid ambiguity in the Mixture Link likelihood due to permutation invariance.

The general question of identifiability for the Mixture Link model still remains to

be addressed. It is clear that it does not always hold. Consider the trivial case m = 1 and

recall that the density simplifies to

f(t | m, p,π, κ) = pt(1− p)1−t

when no regression is linked. This expression is free of π and κ, and therefore there is

no hope of using the data to identify those parameters. Therefore, we must have at least
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m > 1 for identifiability to possibly hold. Recall that in the simple binomial/multinomial

finite mixture with m trials and J subpopulations, a necessary and sufficient condition for

identifiability is that m ≥ 2J − 1; refer to Section 2.2.

4.7 Density Comparison between Mixture Link with other

Binomial Models with Extra Variation

To understand the utility of Mixture Link for modeling overdispersion in prac-

tice, we now examine some plots of the density. Here we consider the distribution

MixLinkJ(m, p,π, κ), i.e. without regression. Plotted in Figures 4.5 and 4.6 are the

densities for the RCB and BB distributions, respectively, which were introduced in Sec-

tion 4.2. For each of p ∈ {0.25, 0.50}, the density is plotted for m = 20 trials and several

settings of φ. Figure 4.7 shows corresponding plots for the Mixture Link density letting

J = 2 and κ = 1. Each shows the binomial density for reference. For beta-binomial, as

the overdispersion parameter φ increases, the density moves from the standard binomial

to one where most mass is at the extreme support values 0 and 20. Under RCB, increasing

φ leads to the formation of a second mode. For the Mixture Link density, increasing π

has the effect of fattening the tails compared to the standard binomial.

Figures 4.8, 4.9, and 4.10 show several more cases of the Mixture Link density,

focusing only on the case p = 0.5 but varying κ ∈ {0.5, 1, 2} and J ∈ {2, 3}. A variety

of shapes can be seen for the limited settings of π that are shown. Expressing two modes

is possible, as is inflating mass at the extreme support values 0 and 20.
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Figure 4.5: BB densities.
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Figure 4.7: Mixture Link densities.
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Figure 4.8: Compare Mixture Link densities for J = 2 and J = 3 when κ = 0.5.
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Figure 4.9: Compare Mixture Link densities for J = 2 and J = 3 when κ = 1.
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4.8 Moment-Based Approximation to the Mixture Link

Model

The density of a linear combination of Dirichlet random vector does not have a

simple closed form in general, and numerical integration of the Imhof expression (4.16)

is time consuming when repeated many times as needed when evaluating the density

or likelihood for Mixture Link. The issue is more severe when the likelihood must be

evaluated many times, as required in many MCMC sampling and numerical optimization

approaches. In this section we consider approximating the linear combination of Dirichlet

density by a simpler beta density, where the parameters are selected by moment-matching.

The resulting approximation to the Mixture Link density is easily evaluated numerically,

for example by quadrature. This moment matching evokes the classical approximation by

Satterthwaite (1946), which is used in approximating the distribution of the two sample

t-test when the population variances are unequal. Satterthwaite (1946) uses a single χ2
v

random variable to approximate a linear combination of chi-squares
∑k

i=1 aiXi, where

the degrees of freedom v is selected by equating first and second moments.

Suppose B ∼ Beta(a, b) and B∗ = (u − `)B + ` for given numbers ` < u. Then

B∗ has a shifted/scaled beta distribution on the interval (`, u). We have for B∗ that

E(B∗) = (u− `) a

a+ b
+ `, and

Var(B∗) = (u− `)2 ab

(a+ b)2(a+ b+ 1)
.

Recall that for a given c ∈ Rk and λ ∼ Dirichletk(κ1), the expected value and variance
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of cTλ are given by

ξ = E(cTλ) = c̄, and

τ 2 = Var(cTλ) =
kcTc− (kc̄)2

k2(1 + kκ)

respectively. Equating E(B∗) = ξ and Var(B∗) = τ 2 and solving for a and b, we obtain

that

a =

(
ξ − `
τ

)2
u− ξ
u− `

− ξ − `
u− `

and b = a

(
u− ξ
ξ − `

)

For the Mixture Link model, let `j and uj be the smallest and largest elements of vj.,

respectively, so that the interval (`j, uj) represents the range of vTj.λ for j = 1, . . . , J . To

obtain the beta approximation to Mixture Link, let

ξj = E(vTj.λ) = v̄j.

τ 2
j = Var(vTj.λ) =

kvTj.vj. − (kv̄j.)
2

k2(1 + kκ)
,

so that B∗j ∼ (uj − `j)Beta(aj, bj) + `j is a moment-matched shifted/scaled beta with

aj =

(
ξj − `j
τj

)2
uj − ξj
uj − `j

− ξj − `j
uj − `j

and bj = aj

(
uj − ξj
ξj − `j

)
.

Now an approximation to the Mixture Link density may be computed as

f(t | m, p,π, κ) =

(
m

t

) J∑
j=1

πj

∫ uj

`j

wt(1− w)m−t · 1

uj − `j
h

(
w − `j
uj − `j

∣∣∣∣ aj, bj) dw
(4.20)

where h(· | a, b) represents the standard Beta(a, b) density. Letting z = (w−`j)/(uj−`j)
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we may transform to

f(t | m, p,π, κ)

=

(
m

t

) J∑
j=1

πj

∫ 1

0

(
(uj − `j)z + `j

)t(
1− [(uj − `j)z + `j]

)m−t
g(z | aj, bj)dz,

(4.21)

which emphasizes that the expression is not quite in a conjugate beta form, unless `j = 0

and uj = 1, in which case

f(t | m, p,π, κ) =
J∑
j=1

πj

(
m

t

)
B(aj + t, bj +m− t)

B(aj, bj)

can be recognized as a beta-binomial finite mixture (recall Example 1.2). In general,

(4.21) may be evaluated numerically by any method which can evaluate one-dimensional

integrals over a bounded range. For example, taking N quadrature points 0 < z̃1 < · · · <

z̃N < 1 spread (say) uniformly over (0, 1), and corresponding weights

w̃
(j)
d =

w
(j)
d∑N

`=1w
(j)
`

, where w
(j)
d =

1

uj − `j
h

(
z̃d − `j
uj − `j

∣∣∣∣ aj, bj) ,
for d = 1, . . . , N and j = 1, . . . , J . We may then compute the density as

f(t | m, p,π, κ) ≈
(
m

t

) J∑
j=1

πj

N∑
d=1

[
(uj − `j)z̃d + `j

]t[
1− ((uj − `j)z̃d + `j)

]m−t
w̃

(j)
d .

Note that it is possible for uj = `j; in this case, the approximation

∫ uj

`j

wt(1− w)m−t · 1

uj − `j
h

(
w − `j
uj − `j

∣∣∣∣ aj, bj) dw
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cannot be computed, but the original integral simplifies to

∫ uj

`j

wt(1− w)m−t · fA(j)(w)dw = `tj(1− `j)m−t,

regardless of the distribution assumed for µ. Notice that when κ→∞,

aj
aj + bj

=
aj

aj(
uj−ξj
ξj−`j + 1)

=
ξj − `j
uj − `j

is free of κ, and

(aj + bj + 1) = 1 + aj

(
uj − ξj
ξj − `j

+ 1

)
→∞

since aj →∞. Therefore

E(B∗j ) = (uj − `j)
aj

aj + bj
+ `

→ (uj − `j)
ξj − `j
uj − `j

+ `j = ξj

and

Var(B∗j ) = (uj − `j)2 ajbj
(aj + bj)2(aj + bj + 1)

= (uj − `j)2 aj
aj + bj

[
1− aj

aj + bj

]
1

(aj + bj + 1)
→ 0,

and hence the distribution of B∗j converges to a point mass at ξj . In this case, the approx-

imate Mixture Link density becomes

f(t | m, p,π) =

(
m

t

) J∑
j=1

πjξ
t
j(1− ξj)m−t =

(
m

t

) J∑
j=1

πj v̄
t
j.(1− v̄j.)m−t,

just as in (4.12) under the exact linear combination of Dirichlet distribution.
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To evaluate the accuracy of the beta approximation, let us first compare the den-

sity of cTλ with that of B∗ ∼ (u − `)Beta(a, b) + `, where λ ∼ Dirichletk(κ1), c =

(c1, . . . , ck), ` is the smallest element of c, u is the largest element of c, and a, b are given

by the moment matching discussed earlier in this section. Consider the distance based on

the supremum norm, defined as

D(f, g) = sup
x∈Ω
|f(x)− g(x)| (4.22)

for densities f and g, where Ω is the sample space. We have that D(f, g) ≥ 0, with

D(f, g) = 0 attained only when f(x) = g(x) for all x ∈ Ω. Table 4.2 shows results

of computing the sup norm distance numerically for several settings of c and κ. For all

results, f is taken to be the density of cTλ computed by the Imhof procedure, and g

is the moment-matched beta density with the R integrate function used to compute

integrals. Figures 4.11 and 4.12 plot both densities with c = (0, 0.1, 1) using several

of the κ settings from the table. Similarly, Figure 4.13 plots entries corresponding to

c = (0, 0.05, 0.5, 0.95, 1). It can be seen that, for a given c, the beta approximation may

have little resemblance to f for small κ, but becomes more accurate as κ is increased

from zero. The approximation also appears to work better when the entries of c are more

uniformly spaced and more symmetric about the middle of the interval [`, u]. For k = 2,

the approximation is very accurate for all κ (and matches exactly when κ = 1), but this is

the least useful case because the density of cTλ has the convenient closed form (4.17).

Now let us compare the exact Mixture Link density f integrated by the Imhof

method to the Mixture Link density g with random effects approximated by moment-

matched beta random effects. Tables 4.3, 4.4, and 4.5 show the sup norm distance

for m = 5, 10, 20 respectively. Figure 4.14 shows the two densities plotted for π =

( 1
20
, 2

20
, 3

20
, 4

20
, 5

20
), p ∈ {0.1, 0.5}, and κ ∈ {0.5, 1, 2}. As expected, when all other set-

tings are kept fixed, the magnitude of the distance decreases as κ increases. It also appears
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to increase as m increases. It is not immediately clear how changing π and p affects the

magnitude of the distance. Figure 4.14 shows that, even in a case from Table 4.5 with

larger distances, the difference between the two distributions is small, indicating that the

approximation is very good overall.

Empirical evidence given in this section suggests that the moment-matched beta

distribution gives a very close result to the exact random effects distribution in computing

integrals required to evaluate the Mixture Link density. It would be desirable to give a

theoretical justification as well. The moment-matched beta density has great practical

advantage over the linear combination of Dirichlet density, in that it is routine to evaluate

using standard statistical software.

156



Ta
bl

e
4.

2:
D

is
ta

nc
e
D

(f
,g

)
be

tw
ee

n
th

e
de

ns
ity

f
of
c
T
λ

an
d

de
ns

ity
g

of
be

ta
ap

pr
ox

im
at

io
n.

κ
c

0.
25

0.
5

0.
75

1
2

3
4

(0
,1
)

2.
22

0
E
−
16

3.
33

1E
−
16

2.
22

0E
−
16

0
2
.2
20

E
−
16

8.
8
8
2
E
−
1
6

1.
7
7
6
E
−
1
5

(0
.5
,1
)

4.
44

1
E
−
16

1.
77

6E
−
15

2.
22

0E
−
16

0
8
.8
82

E
−
16

1.
5
5
4
E
−
1
5

6.
2
1
7
E
−
1
5

(0
,0
.5
,1
)

2.
88

3
E
−
01

1.
85

6E
−
01

1.
37

7E
−
01

1.
09

4
E
−
01

1.
04

5
E
−
01

6.
7
3
8
E
−
0
2

5.
1
7
1
E
−
0
2

(0
,0
.2
,1
)

1.
76

6
E
−
01

1.
50

1E
−
01

1.
36

2E
−
01

1.
27

7
E
−
01

1.
12

4
E
−
01

3.
0
8
5
E
−
0
2

7.
7
3
7
E
−
0
2

(0
,0
.1
,1
)

9.
89

1
E
−
02

8.
73

1E
−
02

8.
10

4E
−
02

4.
92

0
E
−
01

1.
54

6
E
−
01

1.
1
7
4
E
−
0
1

1.
0
3
2
E
−
0
1

(0
,0
.3
,0
.7
,1
)

2.
77

8
E
−
01

1.
40

4E
−
01

8.
46

4E
−
02

5.
69

0
E
−
02

7.
80

6
E
−
03

2.
1
0
8
E
−
0
2

1.
9
3
0
E
−
0
2

(0
,0
.1
,0
.9
,1
)

1.
00

8
E
−
01

7.
19

2E
−
02

8.
94

8E
−
02

5.
71

2
E
−
02

2.
72

5
E
−
02

2.
6
5
7
E
−
0
2

2.
2
7
4
E
−
0
2

(0
,0
.1
,0
.2
,1
)

2.
30

8
E
−
01

1.
05

4E
+
00

8.
25

7E
−
01

6.
86

2E
−
01

4.
01

6
E
−
01

3.
2
2
2
E
−
0
1

2.
8
8
8
E
−
0
1

(0
,0
.0
5,
0
.5
,0
.9
5,
1)

1.
05

6
E
−
01

4.
71

0E
−
02

4.
41

4E
−
02

2.
37

9
E
−
02

5.
36

9
E
−
03

1.
9
1
5
E
−
0
3

6.
8
0
1
E
−
0
4

(0
,0
.1
,0
.2
,0
.3
,1
)

4.
22

8
E
+
00

1.
09

0E
+
00

8.
75

7E
−
01

7.
75

6E
−
01

5.
77

6
E
−
01

4.
9
8
0
E
−
0
1

4.
5
8
4
E
−
0
1

157



0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

x

de
ns

ity

Lin. Comb. Dirichlet
Beta Approx

(a) κ = 0.25

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
x

de
ns

ity

Lin. Comb. Dirichlet
Beta Approx
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Figure 4.11: Comparison between density of cTλ and moment-matched beta taking c =
(0, 0.1, 1).
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Figure 4.12: Comparison between density of cTλ and moment-matched beta taking c =
(0, 0.1, 1).
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Figure 4.13: Comparison between density of cTλ and moment-matched beta taking c =
(0, 0.05, 0.5, 0.95, 1).
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Table 4.3: Distance D(f, g) between exact Mixture Link density f and density g using
beta approximation with m = 5 trials.

π p κ = 0.5 κ = 1 κ = 2
(1

2
, 1

2
) 0.05 2.960E−05 1.110E−16 8.327E−17

0.1 1.654E−05 1.665E−16 1.110E−16
0.5 2.948E−07 5.551E−17 5.551E−17

(1
4
, 3

4
) 0.05 1.415E−05 5.551E−17 5.551E−16

0.1 2.440E−05 1.110E−16 3.331E−16
0.5 7.371E−08 1.665E−16 2.776E−17

(1
3
, 1

3
, 1

3
) 0.05 1.719E−03 4.614E−06 2.067E−06

0.1 1.215E−03 2.167E−06 1.697E−06
0.5 1.953E−03 4.468E−04 8.028E−05

(1
6
, 2

6
, 3

6
) 0.05 1.828E−03 5.872E−06 2.039E−06

0.1 1.126E−03 2.373E−06 1.688E−06
0.5 1.502E−03 4.218E−04 8.825E−05

( 1
10
, 2

10
, 7

10
) 0.05 2.094E−03 7.767E−06 1.726E−06

0.1 1.390E−03 2.329E−06 1.256E−06
0.5 7.094E−05 1.949E−05 4.573E−06

(0.05, 0.1, 0.85) 0.05 2.407E−03 1.256E−05 2.125E−06
0.1 3.086E−04 9.323E−05 2.609E−05
0.5 3.385E−05 2.500E−06 5.931E−07

(1
4
, 1

4
, 1

4
, 1

4
) 0.05 1.639E−03 5.445E−06 2.047E−06

0.1 1.159E−03 2.040E−06 1.747E−06
0.5 5.389E−06 3.134E−07 3.846E−07

( 1
10
, 2

10
, 3

10
, 4

10
) 0.05 1.843E−03 6.928E−06 2.102E−06

0.1 6.676E−04 2.749E−06 2.033E−06
0.5 2.732E−04 4.892E−05 7.742E−06

(0.05, 0.1, 0.15, 0.7) 0.05 2.255E−03 1.363E−05 2.238E−06
0.1 2.949E−04 2.085E−04 9.095E−05
0.5 1.804E−05 4.227E−06 1.112E−06

(1
5
, 1

5
, 1

5
, 1

5
, 1

5
) 0.05 1.998E−03 5.942E−06 1.726E−06

0.1 1.154E−03 2.283E−06 1.358E−06
0.5 2.131E−05 3.395E−06 8.483E−07

( 1
15
, 2

15
, 3

15
, 4

15
, 5

15
) 0.05 1.959E−03 7.703E−06 1.999E−06

0.1 9.682E−04 3.919E−04 1.310E−04
0.5 2.353E−06 9.916E−07 5.511E−07

( 1
20
, 2

20
, 3

20
, 4

20
, 10

20
) 0.05 2.267E−03 1.091E−05 1.974E−06

0.1 4.655E−04 2.410E−04 9.071E−05
0.5 6.229E−05 1.127E−05 2.077E−06
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Table 4.4: Distance D(f, g) between exact Mixture Link density f and density g using
beta approximation with m = 10 trials.

π p κ = 0.5 κ = 1 κ = 2
(1

2
, 1

2
) 0.05 4.196E−04 1.221E−15 1.388E−15

0.1 6.439E−04 1.499E−15 1.665E−15
0.5 1.540E−07 4.163E−16 5.412E−16

(1
4
, 3

4
) 0.05 2.122E−04 1.110E−15 1.332E−15

0.1 3.846E−04 1.277E−15 1.665E−15
0.5 7.486E−04 6.384E−16 8.604E−16

(1
3
, 1

3
, 1

3
) 0.05 1.718E−03 3.364E−06 3.261E−06

0.1 1.215E−03 1.404E−06 2.197E−06
0.5 3.336E−03 1.008E−03 2.392E−04

(1
6
, 2

6
, 3

6
) 0.05 1.827E−03 4.462E−06 3.292E−06

0.1 1.126E−03 1.454E−06 2.305E−06
0.5 2.023E−03 8.228E−04 2.333E−04

( 1
10
, 2

10
, 7

10
) 0.05 2.093E−03 6.615E−06 2.776E−06

0.1 1.393E−03 2.040E−06 1.934E−06
0.5 2.969E−04 7.880E−05 1.920E−05

(0.05, 0.1, 0.85) 0.05 2.407E−03 1.091E−05 3.732E−06
0.1 4.386E−04 1.536E−04 4.998E−05
0.5 9.326E−05 8.998E−06 9.050E−07

(1
4
, 1

4
, 1

4
, 1

4
) 0.05 1.638E−03 4.173E−06 3.252E−06

0.1 1.158E−03 1.350E−06 2.273E−06
0.5 5.296E−06 2.024E−07 2.751E−07

( 1
10
, 2

10
, 3

10
, 4

10
) 0.05 1.841E−03 5.584E−06 3.380E−06

0.1 1.024E−03 1.942E−06 2.696E−06
0.5 5.283E−04 1.292E−04 2.540E−05

(0.05, 0.1, 0.15, 0.7) 0.05 2.432E−03 1.208E−05 3.730E−06
0.1 3.312E−04 2.801E−04 1.483E−04
0.5 7.777E−05 1.818E−05 3.262E−06

(1
5
, 1

5
, 1

5
, 1

5
, 1

5
) 0.05 1.997E−03 4.657E−06 2.938E−06

0.1 1.153E−03 1.566E−06 1.901E−06
0.5 6.269E−05 1.115E−05 1.719E−06

( 1
15
, 2

15
, 3

15
, 4

15
, 5

15
) 0.05 1.957E−03 6.334E−06 3.296E−06

0.1 3.754E−03 1.785E−03 6.688E−04
0.5 5.044E−06 1.951E−06 6.966E−07

( 1
20
, 2

20
, 3

20
, 4

20
, 10

20
) 0.05 2.265E−03 9.459E−06 3.355E−06

0.1 9.932E−04 6.646E−04 2.905E−04
0.5 2.091E−04 4.430E−05 7.484E−06
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Table 4.5: Distance D(f, g) between exact Mixture Link density f and density g using
beta approximation with m = 20 trials.

π p κ = 0.5 κ = 1 κ = 2
(1

2
, 1

2
) 0.05 1.390E−03 2.220E−16 1.665E−16

0.1 1.595E−03 5.135E−16 5.829E−16
0.5 4.767E−07 4.718E−16 6.800E−16

(1
4
, 3

4
) 0.05 9.483E−04 1.665E−16 3.331E−16

0.1 1.332E−03 4.163E−16 3.608E−16
0.5 1.014E−03 9.576E−16 1.193E−15

(1
3
, 1

3
, 1

3
) 0.05 1.716E−03 2.047E−06 4.290E−06

0.1 1.214E−03 8.808E−07 2.207E−06
0.5 3.488E−03 1.268E−03 3.766E−04

(1
6
, 2

6
, 3

6
) 0.05 1.825E−03 2.906E−06 4.546E−06

0.1 1.125E−03 7.904E−07 2.529E−06
0.5 1.935E−03 8.333E−04 3.257E−04

( 1
10
, 2

10
, 7

10
) 0.05 2.092E−03 5.015E−06 4.519E−06

0.1 1.396E−03 1.486E−06 2.663E−06
0.5 5.658E−04 2.556E−04 5.106E−05

(0.05, 0.1, 0.85) 0.05 2.408E−03 8.446E−06 6.074E−06
0.1 4.902E−04 1.828E−04 6.382E−05
0.5 3.740E−04 7.331E−05 2.303E−06

(1
4
, 1

4
, 1

4
, 1

4
) 0.05 1.637E−03 2.766E−06 4.332E−06

0.1 1.157E−03 7.914E−07 2.343E−06
0.5 2.531E−07 1.200E−07 1.882E−07

( 1
10
, 2

10
, 3

10
, 4

10
) 0.05 1.925E−03 3.953E−06 4.724E−06

0.1 1.142E−03 1.199E−06 3.008E−06
0.5 5.745E−04 1.818E−04 4.667E−05

(0.05, 0.1, 0.15, 0.7) 0.05 2.490E−03 9.792E−06 5.821E−06
0.1 3.946E−04 4.358E−04 2.040E−04
0.5 2.026E−04 5.511E−05 9.627E−06

(1
5
, 1

5
, 1

5
, 1

5
, 1

5
) 0.05 1.995E−03 3.198E−06 4.050E−06

0.1 1.152E−03 9.531E−07 2.010E−06
0.5 9.851E−05 2.251E−05 4.207E−06

( 1
15
, 2

15
, 3

15
, 4

15
, 5

15
) 0.05 1.902E−03 4.634E−06 4.698E−06

0.1 7.119E−03 3.804E−03 1.515E−03
0.5 6.814E−06 3.633E−06 9.605E−07

( 1
20
, 2

20
, 3

20
, 4

20
, 10

20
) 0.05 2.230E−03 7.487E−06 5.065E−06

0.1 1.473E−03 9.554E−04 4.061E−04
0.5 3.739E−04 9.918E−05 2.944E−05
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Figure 4.14: Comparison of exact Mixture Link density f and density g using beta ap-
proximation with m = 20 trials and π = ( 1
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4.9 Computational Studies

We now present an application of the Mixture Link model to an example dataset

studying the effect of radiation dose on probability of chromosome aberration. We first

describe how numerical optimization is used to obtain the maximum likelihood estimator

and standard errors. A generalized goodness-of-fit (GOF) test is then recalled from the

literature, which can be carried out in the “independent but not identically distributed bi-

nomial” case using the estimates obtained by numerical MLE. Finally, equipped with the

GOF test, a study is carried out on the chromosome aberration data to compare Mixture

Link to several binomial models for overdispersion.

4.9.1 Numerical Maximum Likelihood

In need of a practical way to carry out inference under Mixture Link, we make use

of general numerical optimization via the optim function in R. As we have noted in

Remark 4.6, the likelihood is not differentiable at all points in Θ, but as we will see later,

pressing ahead with the numerical MLE gives reasonable results.

Consider the regression case Ti
ind∼ MixLink(mi, pi,π, κ), pi = G(xTi β), where

the objective for inference is θ = (β,π, κ). Denote φ = (φ1,φ2, φ3) as a transformed

version of θ to Rq, where φ1 ∈ Rd, φ2 ∈ RJ , and φ3 ∈ R. As the first step in computing

the likelihood, the point φ proposed by optim is transformed as θ = θ(φ) where

θ =


β

π

κ

 =


θ1(φ1)

θ2(φ2)

θ3(φ3)

 .

Recall that G is taken to be the logistic CDF, so that its derivative G′ represents the

logistic density. Furthermore, let us denote G(x) = (G(x1), . . . , G(xJ)), G′(x) =
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(G′(x1), . . . , G′(xJ)). We take the transformation θ to be

θ1(x) = x, θ2(x) =
G(x)

1TG(x)
, and θ3(x) = exp(x).

The Jacobian of this transformation is

∂θ(φ)

∂φ
=


Id 0 0

0 ∂θ2(φ2)
∂φ2

0

0 0 exp(φ3)


with

∂θ2(x)

∂x
=
[
1T{G(x)}

]−2

{
{1TG(x)} ·Diag{G′(x)} − {G(x)}{G′(x)}T

}
.

Then, given an estimate φ̂ and the corresponding Hessian H(φ̂) from optim, an esti-

mate for the covariance of θ̂ is

V̂ar(θ̂) =

[
∂θ(φ)

∂φ

]
[−H(φ)]−1

[
∂θ(φ)

∂φ

]T ∣∣∣∣∣
φ=φ̂

, (4.23)

and standard errors for θ̂ can be computed by taking the square roots of the diagonal en-

tries. In computing (4.23), entries in H and the Jacobian corresponding to the redundant

J th element of π are dropped from the calculation to avoid singularity. We specifically

make use of the quasi-Newton L-BFGS-B method in optim, whereby the gradient and

Hessian are computed by numerical differentiation.

Whether (4.23) is a valid estimator of the covariance of the MLE has not been es-

tablished. An alternate way of computing standard errors is by bootstrapping; in this

work we will consider the parametric bootstrap (as opposed to the more common non-

parametric variant) to emphasize that we are interested in properties of Mixture Link but

not necessarily the “true” distribution of the data. In the parametric bootstrap approach,
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we consider B samples

T
(b)
i

ind∼ MixLinkJ(mi, p̂i, π̂, κ̂), p̂i = G(xTi β̂),

for i = 1, . . . , n and b = 1, . . . , B, where θ̂ = (β̂, π̂, κ̂) is the MLE fitted to the original

data. We then obtain θ̂(b) by computing the MLE for the bth sample for b = 1, . . . , B.

Taking θ̄Boot = 1
B

∑B
b=1 θ̂

(b), the covariance of θ̂ may then be estimated by

V̂arBoot(θ̂) =
1

B − 1

B∑
b=1

[
θ̂(b) − θ̄Boot

] [
θ̂(b) − θ̄Boot

]T
, (4.24)

and standard errors for each of the estimated quantities may be computed by the square

roots of the diagonal elements.

4.9.2 Goodness-of-Fit Test

To compare several binomial models with extra variation on the same dataset, we

consider the goodness-of-fit (GOF) test

H0 : Ti
ind∼ f(ti | mi,θ,xi) for some θ ∈ Θ vs. H1 : Not,

where f is fully specified up to a possibly unknown parameter θ in the space Θ ⊆ Rq. For

binomial data with mi varying with observations, Neerchal and Morel (1998) proposed

the following variation to the usual Pearson chi-square test statistic. Suppose A1, . . . ,Ar

are disjoint intervals that cover [0, 1], and define the GOF test statistic

X(θ) =
r∑
`=1

[O` − E`(θ)]2

E`(θ)
, (4.25)
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where

E`(θ) =
n∑
i=1

mi∑
t=0

P(t | mi,θ)I

(
t

mi

∈ A`
)
, and

O` =
n∑
i=1

I

(
ti
mi

∈ A`
)
.

Sutradhar et al. (2008) shows that, when the null distribution f is RCB, X(θ) ∼ χ2
r−1

when all parameters are known and X(θ̂) ∼ χ2
r−1−q when θ ∈ Θ ⊆ Rq is estimated by

maximizing the grouped likelihood

Lg(θ) =
n∏
i=1

r∏
`=1

P

(
ti
mi

∈ A`
∣∣∣∣ mi,θ

)I( ti
mi
∈A`

) ,
In practice, it is more natural to work with the ungrouped likelihood

Lu(θ) =
n∏
i=1

f(ti | mi,θ)

of the observed Ti. There is a noted “recovery” of degrees of freedom in the GOF statistic

when the ungrouped MLE is used, so that X(θ̂) follows a χ2
ν distribution with ν between

r−1−q and r−1. Although the theory in (Sutradhar et al., 2008) is stated specifically for

the RCB distribution, proofs are given for general binomial models with varying mi. A

number of regularity conditions are assumed; for example, to ensure first-order efficiency

of the MLE.

Our GOF studies use the ungrouped MLE and consider p-values based on ν =

r − 1 − q. Recall that a smaller degrees of freedom ν will result in a more right-skewed

χ2
ν distribution. Consequently, when ν is reduced andX(θ̂) is held fixed, there will appear

to be stronger evidence against the hypothesis of adequate fit H0. Therefore, taking ν to

be the smallest value in the range [r − 1 − q, r − 1] is conservative to test a model for

adequate fit. The selection of intervals A` is left up to the analyst, but it is suggested to
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follow the rule of thumb that all E`(θ) ≥ 5 to ensure that the distribution theory holds.

Some discussion on interval selection is given in (Kendall and Stuart, 1979, Section 30.2);

common choices include equal width intervals or intervals having equal probability.

The parametric bootstrap is useful in applying the GOF test under Mixture Link.

It is not immediately clear that the required regularity conditions hold for Mixture Link.

Also, it may be desired to obtain a single p-value for the GOF test, especially when the

range of p-values computed by χ2
r−1−q and χ2

r−1 is large, or the range contains values

which indicate both an acceptable and unacceptable fit. The parametric bootstrap may be

used to verify the distribution of the GOF test statistic and to compute a more accurate

p-value. Similarly to Section 4.9.1, the bootstrap requires B samples

T
(b)
i

ind∼ MixLinkJ(mi, p̂i, π̂, κ̂), p̂i = G(xTi β̂),

for i = 1, . . . , n and b = 1, . . . , B, drawn using the (ungrouped) MLE θ̂ = (β̂, π̂, κ̂)

from the observed data . Using the bootstrap sample T (b)
1 , . . . , T

(b)
n in place of the ob-

served data, the (ungrouped) bootstrap MLE θ̂(b) is computed. The bootstrap GOF test

statistic X(b) is then computed using the bootstrap sample and bootstrap MLE. The the-

oretical distribution of X(θ̂) can then be studied through the empirical distribution of

X(1), . . . , X(B). A bootstrapped p-value may be computed as

p-valueBoot =
1

B

B∑
b=1

I(X(b) ≥ X(θ̂)).

Note that the above bootstrap procedure reflects the use of the ungrouped likelihood

and the necessity to estimate the parameters. If instead the MLE θ̂ of the observed data

were used to compute each X(b), the empirical distribution of X(1), . . . , X(B) would be

comparable to the distribution of X(θ) when all parameters are known.
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4.9.3 Chromosome Aberration Data

Awa et al. (1971) and Sofuni et al. (1978) study the effects of radiation exposure on

chromosome aberrations in survivors of the atomic bombs that were used in Hiroshima

and Nagasaki. Subjects in the study consist of 649 residents in Hiroshima and 403 resi-

dents in Nagasaki for whom radiation dose estimates were available. Subjects were placed

into exposed and control groups. Individuals in the control group were either not present

in the cities at the time of the bombings, or received an estimated dose of less than one

rad. A chromosome analysis is carried out on mi circulating lymphocytes for the ith sub-

ject, and of those, the number of chromosome aberrations ti is recorded1. Two types of

radiation exposure are measured, neutron and gamma, where higher doses of neutron ex-

posure in Hiroshima are suspected of leading to increased incidence of aberration. Otake

and Prentice (1984) analyze this data using beta-binomial, acknowledging the need for

overdispersion modeling.

A subset of this data is featured in Morel and Neerchal (2012) as an illustrative

example for goodness-of-fit in binomial models for extra variation. It is natural to suspect

that overdispersion will be an issue in this data under standard logistic regression, as the

presence or absence of aberrations within the mi circulating lymphocytes of a particular

subject may not be independent. Here, n = 648 observations from the Hiroshima portion

of the original data are considered, and the covariate di represents the sum of neutron and

gamma exposure for the ith subject. The total exposure is then normalized to

zi =
di − d̄√

1
n

∑n
i=1(di − d̄)2

, i = 1, . . . n.

Using the methodology described in Sections 4.9.1 and 4.9.2, the following models will

1A lymphocyte is a type of white blood cell that plays a fundamental role in the immune sys-
tem. An aberration is an abnormality involving the structure or number of chromosomes. See www.
britannica.com/EBchecked/topic/352799/lymphocyte and www.britannica.com/
EBchecked/topic/116040/chromosomal-mutation.

170

www.britannica.com/EBchecked/topic/352799/lymphocyte
www.britannica.com/EBchecked/topic/352799/lymphocyte
www.britannica.com/EBchecked/topic/116040/chromosomal-mutation
www.britannica.com/EBchecked/topic/116040/chromosomal-mutation


now be compared for goodness-of-fit for the chromosome aberration dataset:

• Logistic: Ti
ind∼ Bin(mi, pi),

• RCB: Ti
ind∼ RCB(mi, pi, φ),

• BB: Ti
ind∼ BB(mi, pi, φ),

• RCB-Reg: Ti
ind∼ RCB(mi, pi, φi),

• BB-Reg: Ti
ind∼ BB(mi, pi, φi),

• MixLinkJ2: Ti
ind∼ MixLink2(mi, pi,π, κ).

Taking g = G−1 as the logistic link function, the regression g(pi) = β0 + β1zi + β2z
2
i

is used for all models and g(φi) = γ0 + γ1zi + γ2z
2
i for the two “-Reg” models. The

models RCB-Reg and BB-Reg have been considered in (Morel and Neerchal, 2012). The

quadratic term in the regression model was previously suggested in (Sofuni et al., 1978).

Morel and Neerchal (2012) consider linking the regression to the overdispersion parame-

ter in RCB and BB, in addition to the probability of aberration, indicating that the amount

of overdispersion also varies with radiation dose.

The MLEs and corresponding standard errors for the candidate models are given

in Table 4.6. All models give roughly similar estimates of β, having the same sign and

similar magnitude. The standard errors for Logistic are noticeably smaller than the other

models, indicating that the extra variation in the data is not being reflected as uncertainty

in the estimates. The other models allow the standard error to be inflated. The stan-

dard errors for MixLinkJ2 have been computed by numerical Hessian as in (4.23); for

comparison, the standard errors via (4.24) using B = 500 bootstrap samples are given

in Table 4.7. The two methods give similar standard errors, with κ having the most no-

table difference. Figure 4.15 displays the empirical CDF of the κ̂(b), showing several

large values which seem to break away from the natural curve of the remaining values.

It is possible that these larger values are artifacts of the numerical optimization and the

Hessian-based estimate V̂ar(θ̂) is a reasonable variance estimate of the MLE.

Table 4.8 shows the GOF test result for each model along with other standard model
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Table 4.6: Maximum likelihood estimates for candidate models, with standard errors in
parentheses.

Logistic
β0 -3.0306 (0.0246)
β1 1.3017 (0.0343)
β2 -0.3071 (0.0158)

RCB
β0 -2.9901 (0.0352)
β1 1.2040 (0.0415)
β2 -0.3429 (0.0242)
φ 0.1511 (0.0080)

BB
β0 -2.9487 (0.0445)
β1 1.1144 (0.0550)
β2 -0.2676 (0.0276)
φ 0.1661 (0.0076)

RCB-Reg
β0 -3.0699 (0.0338)
β1 1.3010 (0.0444)
β2 -0.3705 (0.0244)
γ0 -2.3526 (0.0965)
γ1 0.9331 (0.1569)
γ2 -0.2365 (0.0565)

BB-Reg
β0 -3.0145 (0.0445)
β1 1.3594 (0.0564)
β2 -0.3449 (0.0332)
γ0 -1.8611 (0.0737)
γ1 0.7993 (0.1109)
γ2 -0.1610 (0.0525)

MixLinkJ2
β0 -3.0061 (0.0441)
β1 1.3656 (0.0562)
β2 -0.3383 (0.0314)
π1 0.3297 (0.0175)
κ 1.6293 (0.2472)

Table 4.7: Standard errors of MixLinkJ2 MLE computed using 500 parametric bootstrap
samples.

Bootstrap SE
β0 0.0458
β1 0.0520
β2 0.0306
π1 0.0170
κ 0.2858

selection criteria: −2 LogLik, Akaike information criteria (AIC) and Bayesian informa-

tion criterion (BIC). Here, LogLik is the maximized value of the log-likelihood so that

AIC = −2 LogLik + 2q and BIC = −2 LogLik + q log(n). First consider the information

theoretic (AIC and BIC) criteria, where a smaller value indicates a preferable model. As

expected, Logistic results in the largest AIC/BIC because it does not account for the sus-

pected overdispersion. The two RCB models have smaller AIC/BIC than Logistic, but not

as small as in the two BB models. The BB-Reg model fares appears to fit significantly

better than BB, indicating that the overdispersion parameter varies with radiation dose.

The MixLinkJ2 model fits almost as well as BB-Reg, even without modeling π or κ as a

function of radiation dose.

The GOF results give additional insight into the quality of the fits. For each model,
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Figure 4.15: ECDF of estimates κ̂(b) from 500 parametric bootstrap samples.

Table 4.8: Model comparison statistics.

GOF
Model LogLik q AIC BIC statistic df range p-value

Logistic -1814.189 3 3634.400 3647.799 110.38 [17,20] < 10−13

RCB -1567.499 4 3142.997 3160.893 68.25 [15,19] < 10−6

BB -1487.923 4 2983.847 3001.742 93.79 [12,18] < 10−11

RCB-Reg -1546.612 6 3105.224 3132.067 63.96 [18,22] < 10−5

BB-Reg -1429.605 6 2871.211 2898.054 19.40 [17,23] > 0.3063
MixLinkJ2 -1433.331 5 2876.662 2905.506 19.50 [18,23] > 0.3615
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the intervals A` were chosen by first considering

A1 = [0, 0.0099],A2 = (0.0099, 0.0198], . . . ,Ar−1 = (0.2970, 0.3069]

of the same length, and Ar = (0.3069, 1]. This partitioning was selected so the results

can be compared to (Morel and Neerchal, 2012). Using the (ungrouped) MLE for the

model, expected counts for each A` were computed, and A` having expected counts less

than 5 were merged with a neighboring interval. Table 4.9 shows detailed computations

for the GOF statistic (4.25) for the models under consideration, and Figure 4.16 shows

corresponding plots. The grey bars represent the observed counts for a given interval,

and the black dots plot the expected counts using the MLE. The GOF comparison gives

a similar ranking of models as the AIC/BIC comparison. The BB-Reg and MixLinkJ2

models give both give a statistically adequate fit, while the others do not. MixLinkJ2

attains a slightly better fit (a larger p-value) than does BB-Reg, as it features one less

unknown parameter. One feature which seems to be a challenge to model is the large

number of observations with a very low proportion of aberrations; these are counted in

the first interval.

To validate the assumptions needed for the GOF test, Figure 4.17 shows the em-

pirical CDF of the GOF test statistic. It has been computed using B = 200 parametric

bootstrap samples in the manner discussed in Section 4.9.2. As predicted by the theory,

the distribution appears to be a χ2, between χ2
r−1 where no degrees of freedom are spent,

and χ2
r−1−q where q degrees of freedom are used to estimated the q unknown parameters.

The bootstrap procedure also yields p-valueBoot = 0.46, which can be compared to the

range [0.3615, 0.6717] computed from χ2
r−1−q and χ2

r−1.
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(a) Logistic.
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(b) RCB.
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(c) BB.
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(d) RCB-Reg.

Figure 4.16: GOF plots for observed vs. expected counts. The grey bars represent the
observed counts for a given interval, and the black dots are the expected counts under the
MLE. Note that the choice of intervals varies between models.
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(f) MixLinkJ2.

Figure 4.16: (Continued).
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Figure 4.17: Empirical CDF of MixLinkJ2 GOF statistic computed from parametric boot-
strap.
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4.9.4 Mutagenic Data

Neerchal and Morel (1998) present a series of illustrative datasets where male mice

are treated with a suspected mutagen and paired with one or more female mice. The

n female mice are exposed to the male partner for a length of time and then sacrificed.

The uterus of the ith female is then examined. The total number of implanted fetuses is

denoted as mi, and the number which are inviable (i.e. not alive) is ti. Hence, ti can be

considered binomial data from mi trials. The mi have previously been treated as fixed for

simplicity, as will be done in the present study. The data do not indicate which male was

paired to each female, and the pairing of one male with multiple females could violate

a naive assumption of independence among ti, leading to overdispersion. Neerchal and

Morel (1998) compare the viability of RCB and BB for three different datasets, denoted

Dataset I, II, and III which correspond to three mutagenic experiments, using the GOF test

statistic discussed in Section 4.9.2. In this section, we extend the comparison to include

Mixture Link.

The following models are now under consideration:

• Binomial: Ti
ind∼ Bin(mi, p),

• RCB: Ti
ind∼ RCB(mi, p, φ),

• BB: Ti
ind∼ BB(mi, p, φ),

• MixLinkJ2: Ti
ind∼ MixLink2(mi, p,π, κ).

Notice that there is no covariate, and that all four models are applicable. The three models

with extra variation suggest different explanations for the departure from binomial. RCB

suspects a certain dependence among themi fetuses for each female mouse. BB supposes

the probability of inviability for each litter is drawn randomly. MixLinkJ2 makes use of a

mixture of two latent binomial subpopulations, each having different probability of invi-

ability, where p represents the marginal inviability probability of the overall population.

Table 4.10 gives estimates and standard errors for the four models on Datasets I,
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Table 4.10: Estimates for mutagenic datasets with standard errors in parentheses.

Dataset I Dataset II Dataset III
Binomial p 0.0893 (0.0034) 0.1079 (0.0030) 0.0718 (0.0032)

RCB p 0.0890 (0.0045) 0.1088 (0.0035) 0.0760 (0.0049)
φ 0.2550 (0.0223) 0.2031 (0.0195) 0.3235 (0.0302)

BB p 0.0901 (0.0047) 0.1086 (0.0035) 0.0739 (0.0045)
φ 0.2611 (0.0188) 0.2070 (0.0172) 0.2741 (0.0207)

MixLinkJ2 p 0.0921 (0.0050) 0.1091 (0.0035) 0.0756 (0.0053)
π1 0.2083 (0.0255) 0.2935 (0.0309) 0.0438 (0.0114)
κ 2.2469 (1.3163) 3.4942 (1.8510) 5.6057 (5.5856)

II, and III. The estimates were obtained using numerical optimization (optim in R), and

standard errors are computed from the Hessian. The estimates for RCB and BB obtained

in this manner match exactly to (Neerchal and Morel, 1998), but some of the standard er-

rors differ. As expected, the standard errors of p̂ from the extra variation models are larger

than those computed under Binomial. Tables 4.11, 4.12, and 4.13 show GOF statistics,

along with AIC and BIC. Note that a range is given for the degrees of freedom (df) and

p-value because of the recovery of df phenomenon discussed in Section 4.9.2. The accom-

panying Figures 4.18, 4.19, and 4.20 display the fits graphically. The grey bars represent

observed counts and the black dots represent expected counts under the fitted model. The

intervals chosen for GOF computation have been selected to match (Neerchal and Morel,

1998).

For all three datasets, the fit for MixLinkJ2 is on par with the better fit between BB

and RCB, if not providing the best fit itself. For Dataset I, MixLinkJ2 is best in terms of

the GOF statistic, while BB has the smallest AIC and BIC. For Dataset II, none of the

models have a p-value indicating a particularly good fit, but the plots show that BB, RCB,

and MixLinkJ2 are all capturing the general shape of the data. Finally, for Dataset III,

MixLinkJ2 appears to give a slightly better fit than RCB in terms of GOF, AIC, and BIC,

while BB is rejected by the GOF test.
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Figure 4.18: GOF for Mutagenic Dataset I.

Table 4.11: GOF for Mutagenic Dataset I.

Expected
Interval Obs Binomial RCB BB MixLinkJ2
[0, 1/21] 214 160.01 199.01 221.82 214.69
(1/21, 2/21] 139 173.46 163.03 126.52 140.11
(2/21, 3/21] 61 76.59 56.99 51.19 50.78
(3/21, 4/21] 36 55.92 38.61 41.31 37.92
(4/21, 5/21] 23 30.25 20.31 28.79 24.21
(5/21, 6/21] 22 18.29 15.94 23.76 20.61
(6/21, 7/21] 12 5.97 9.74 13.18 12.71
(7/21, 9/21] 11 2.31 10.95 10.74 12.80
(9/21, 1] 6 1.20 9.42 6.69 10.17
X 95.724 9.556 5.545 4.320
df [7, 8] [6, 8] [6, 8] [5, 8]
p-value (lower) 0 0.1446 0.4760 0.5043
p-value (upper) 0 0.2977 0.6980 0.8272
AIC 1687.779 1570.628 1559.833 1562.879
BIC 1692.041 1579.151 1568.356 1581.925
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Figure 4.19: GOF for Mutagenic Dataset II.

Table 4.12: GOF for Mutagenic Dataset II.

Expected
Interval Obs Binomial RCB BB MixLinkJ2
[0, 1/14] 602 548.48 596.26 613.71 609.30
(1/14, 2/14] 372 435.88 396.04 365.28 371.72
(2/14, 3/14] 95 96.22 83.07 81.81 81.59
(3/14, 4/14] 158 162.90 140.56 149.11 146.46
(4/14, 5/14] 41 42.49 42.56 48.01 47.19
(5/14, 6/14] 27 27.35 35.16 38.79 38.81
(6/14, 7/14] 15 10.25 20.64 20.07 20.90
(7/14, 1] 18 4.42 13.71 11.22 12.03
X 58.789 10.227 12.990 12.238
df [6, 7] [5, 7] [5, 7] [4, 7]
p-value (lower) 7.9280E-11 0.0690 0.0235 0.0157
p-value (upper) 2.6329E-10 0.1761 0.0723 0.0930
AIC 3375.531 3317.198 3318.598 3323.018
BIC 3380.723 3327.581 3328.981 3345.783
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Figure 4.20: GOF for Mutagenic Dataset III.

Table 4.13: GOF for Mutagenic Dataset III.

Expected
Interval Obs Binomial RCB BB MixLinkJ2
[0, 1/19] 286 241.16 283.05 298.85 277.62
(1/19, 2/19] 141 171.33 147.44 113.95 155.54
(2/19, 3/19] 51 65.81 44.76 45.85 49.77
(3/19, 4/19] 28 41.82 26.90 34.59 29.47
(4/19, 5/19] 20 20.19 13.50 24.00 13.13
(5/19, 6/19] 7 6.94 8.04 14.50 5.07
(6/19, 7/19] 4 3.44 7.58 9.10 3.85
(7/19, 8/19] 3 1.15 6.25 5.16 2.68
(8/19, 1] 14 2.18 16.47 7.99 16.86
X 88.786 8.248 21.638 6.570
df [7, 8] [6, 8] [6, 8] [5, 8]
p-value (lower) 2.2204E-16 0.2205 0.0014 0.2546
p-value (upper) 7.7716E-16 0.4096 0.0056 0.5837
AIC 1532.123 1382.750 1406.663 1376.636
BIC 1536.441 1391.384 1415.297 1395.904
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4.10 Conclusions

In this chapter, we have presented a new binomial model with extra variation called

Mixture Link, starting from the finite mixture of binomials and linking a regression to

the mixture probability of success. This lead us to consider a random effects model on

the set representing the link from the likelihood to the regression. The random effects are

modeled by a Dirichlet distribution placed on the simplex between extreme points of the

set. An algorithm was given to find all extreme points, which is needed to use the distri-

bution in any practical way. The expectation and variance of Mixture Link were obtained

through the moments of Dirichlet. Evaluation of the Mixture Link density is seen to in-

volve an integral over the distribution of linear combination of Dirichlet, which must be

computed numerically except in some special cases. One general method of exact numer-

ical evaluation was discussed, but we have found it to be too slow for use in applications.

A moment-matched beta approximation to the linear combination of Dirichlet distribu-

tion was proposed to facilitate computation; empirical results show that integrated density

matches closely with the exact density, but theoretical justification is needed. Plots of the

Mixture Link density show that it takes on a variety of expressive shapes. As promising

first applications, Mixture Link is shown to fit the chromosome aberration and mutagenic

data well in terms of AIC/BIC and goodness-of-fit. Initial results for Mixture Link are

encouraging, and the model appears worthy of further study as a tool for the analysis of

binomial data.

Future work is needed so that Mixture Link can be used in application. A more

appropriate estimation method than numerical MLE is desired; ideally it would avoid

derivatives because of differentiability issues seen in the likelihood. Theoretical proper-

ties, such as the consistency and asymptotic distribution of estimators, must be investi-

gated in light of the fact that usual regularity conditions may not be satisfied. The effect

of increasing J remains to be studied: whether more variation will effectively be modeled
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or there will be diminishing returns.

Although we have focused exclusively on binomial data, the Mixture Link ap-

proach can be extended to other kinds of finite mixtures such as normal and poisson.

In the normal case, it may be desired to link a regression φ = xTβ to the mixture mean∑J
j=1 πjµj = µTπ. The set A(φ,π) = {µ ∈ RJ : µTπ = φ} is now an unbounded

hyperplane, and a finite set of vertices is no longer appropriate to characterize it. In the

case of poisson count data where µj > 0 is a rate, A(φ,π) = {µ ∈ [0,∞)J : µTπ = φ}

is a hyperplane constrained within the nonnegative orthant. In a broader sense, it may be

desired to link a regression to a composite parameter which does not explicitly appear in

the likelihood of interest. Our approach can be considered for these cases, provided an

appropriate random effects distribution on the set A can be determined.
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Chapter 5

Conclusion

In this dissertation, we have focused on three problems in the area of finite mixtures

and overdispersion modeling of binomial and multinomial data. We first considered a

matrix which had previously been proposed to approximate the information matrix in

multinomial finite mixtures. We showed that this matrix is actually the information matrix

of the joint complete data, where the latent subpopulation label is observed in addition

to the multinomial outcome. This allows a similar information matrix approximation to

be formulated for any missing data problem, including those involving mixtures. It also

allows the technique of approximate scoring to be applied in these general settings, and

brings to light the close relationship between approximate scoring and EM which was

first noted in previous work. Simulation studies demonstrated the closeness of the two

algorithms. While it was noted that the exact information matrix and the approximation

themselves may not be close when the number of multinomial trials is not large, the

approximation was seen to be quite effective when used to compute estimates by scoring.

A hybrid method using approximate and exact scoring was seen to take advantage of both

the robustness of approximate scoring and the fast convergence of exact scoring.

An extension of the approximate information matrix to exponential family finite

mixtures was considered next. The extension supposes a clustered sampling scheme so

that m observations are sampled within the same (but unknown) subpopulation. This

provides an analogue to the m trials in the multinomial setting and allows the main con-

vergence result, that the exact and approximate information matrices converge together
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as m is taken to infinity, to be extended to exponential family finite mixtures. A bound

on the rate of convergence is obtained, which is exponential in m but where the exponent

depends on the similarity between pairs of subpopulations. When two subpopulations

are more identical, the convergence rate is slowed considerably. The rate of convergence

between approximate and exact information is seen to be related to the optimal probably

of misclassification. Simulations showed that the convergence result does not hold for the

usual independent and identically distributed sampling scheme (as opposed to clustered

sampling). It was seen in several examples that the convergence result holds for contin-

uous mixing distributions and finite mixtures of non-exponential family densities. It is

future work to consider extending the proof to these cases. It would also be of interest if

the accuracy of the information matrix approximation could be improved when m is not

large, or populations are close together.

The last part of the thesis considered linking a regression model to the mixed proba-

bility of success in a binomial finite mixture. The Mixture Link model was formulated as

a random effects model, and some results were obtained to find vertices of the set where

the link is enforced, to compute the likelihood, and to compute moments. Computing

the likelihood exactly requires an expectation over the linear combination of Dirichlet

distribution, which is known to be difficult. We saw empirically that moment-matching

a simple beta distribution serves as a very good approximation, and simplifies computa-

tion. Initial results show that Mixture Link is useful in data analysis using the numerical

MLE, despite differentiability issues in the likelihood. Further study is required to more

thoroughly address issues such as identifiability, computation of the likelihood, and esti-

mation of parameters and standard errors. We believe our random effects approach will

generalize beyond the binomial setting, and may be useful for linking regressions to com-

posite parameters in other models.

This thesis has taken a frequentist perspective, but the study of finite mixtures and

overdispersion is also of interest in Bayesian statistical analysis. One particularly interest-
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ing topic in Bayesian mixture analysis is the Dirichlet Process Mixture (Ferguson, 1973;

Neal, 2000), which has been heavily studied in recent years. An appealing aspect of the

Dirichlet Process Mixture is that it avoids the need to for the analyst to select a number

of mixture components and instead infers this from the data. It may therefore be worth-

while to revisit the approximate information and Mixture Link model from a Bayesian

perspective.
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Appendix A

Additional Results

Remark A.1 (Transformation from chi-square to Dirichlet). Here we show the transfor-

mation from chi-square to Dirichlet. Suppose Xj
ind∼ χ2

vj/2
for j = 0, . . . , k and consider

the transformation

W0 =
k∑
j=0

Xj, W1 = X1/
k∑
j=0

Xj, . . . , Wk = Xk/
k∑
j=0

Xj

Notice that
∑k

j=1Wj = 1−X0/
∑k

j=0 Xj so the inverse transformation is

X0 = W0

(
1−

k∑
j=1

Wj

)
, X1 = W1W0, . . . , Xk = WkW0,

and the ranges of the new variables are

W0 ∈ (0,∞), and



(1−
∑k

j=1Wj)

W1

...

Wk


∈ Sk+1,
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where Sk+1 is the (k+ 1)-dimensional probability simplex. The Jacobian of the transfor-

mation is

J =


∂X0

∂W0
· · · ∂X0

∂Wk

... . . . ...

∂Xk
∂W0

· · · ∂Xk
∂Wk



=



(1−
∑k

j=1Wj) −W0 −W0 · · · −W0 −W0

W1 W0 0 · · · 0 0

W2 0 W0 · · · 0 0

...
...

... . . . ...
...

Wk−1 0 0 · · · W0 0

Wk 0 0 · · · 0 W0


=

1−
∑k

j=1Wj −W01
T
k

W−0 W0Ik


where 1k is a k-dimensional vector of ones, Ik is the k × k identity matrix, and W−0 =

(W1, . . . ,Wk). We may now find the determinant using the well-known property for block

matrices

det

A B

C D

 = det(D) det(A−BD−1C).

This gives

detJ = det(W k
0 ) det

(
1−

k∑
j=1

Wj −−W01
T
k (W0Ik)

−1W−0

)

= W k
0 det

(
1−

k∑
j=1

Wj + 1TkW−0

)

= W k
0
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Therefore,

f(w0, w1, . . . , wk) = f(x0, x1, . . . , xk)| detJ |

=
k∏
j=0

x
vj/2−1
j e−xj/2

Γ(vj/2)2vj/2
wk0

=
[w0(1−

∑k
j=1 wj)]

v0/2−1e−
1
2
w0(1−

∑k
j=1)

Γ(v0/2)2v0/2

k∏
j=1

(w0wj)
vj/2−1e−w0wj/2

Γ(vj/2)2vj/2
wk0

=
w

1
2

∑k
j=0 vj/2−1

0 e−
1
2
w0

Γ(v0/2)2v0/2

(
1−

k∑
j=1

wj

)v0/2−1 k∏
j=1

w
vj/2−1
j

Γ(vj/2)2vj/2
.

Now, to find the marginal distribution of (W1, . . . ,Wk),

f(w1, . . . , wk) =

∫
f(w0, w1, . . . , wk)dw0

=

(
1−

k∑
j=1

wj

)v0/2−1 k∏
j=1

w
vj/2−1
j

Γ(vj/2)2vj/2
1

Γ(v0/2)2v0/2

∫ ∞
0

w
1
2

∑k
j=0 vj/2−1

0 e−
1
2
w0dw0

=

(
1−

k∑
j=1

wj

)v0/2−1 k∏
j=1

w
vj/2−1
j

Γ(vj/2)2vj/2
Γ(
∑k

j=0 vj/2)2
∑k
j=0 vj/2

Γ(v0/2)2v0/2

=
Γ(
∑k

j=0 vj/2)

Γ(v0/2)Γ(v1/2) · · ·Γ(vk/2)
w
v1/2−1
1 · · ·wvk/2−1

k

(
1−

k∑
j=1

wj

)v0/2−1

.

LetD0 = 1−
∑k

j=1 Wj andDj = Wj for j = 1, . . . , k; then we have that (D0, D1, . . . , Dk)

is distributed as Dirichletk+1(v0/2, v1/2, . . . , vk/2).

Let a = (a1, . . . , ak) and λ ∼ Dirichletk(α). Notice that to obtain the joint distri-

bution of (a1λ1, . . . , akλk), we may write


a1λ1

...

akλk

 = Daλ, whereDa = Diag(a)
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and therefore

P(Daλ ≤ x) = P(λ ≤D−1
a x).

Finding the marginal distribution of aTλ from the joint of Daλ is of great interest to

Chapter 4. But this involves a complicated multidimensional integral for general k which

apparently does not have a simple closed form. Therefore, numerical procedures must be

considered when working with this distribution.

Lemma A.2. SupposeA andB are non-singular q × q matrices. Then

A−1 −B−1 = B−1(B −A)A−1

Proof. We have

B −A = B −A

⇐⇒ I −B−1A = B−1(B −A)

⇐⇒ A−1 −B−1 = B−1(B −A)A−1.

Proposition A.3. SupposeA,B are q×q symmetric positive definite matrices, andB−A

is positive definite. ThenA−1 −B−1 is positive definite.

Proof. Notice that

A−1 −B−1 = B−1(B −A)A−1. (A.1)
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Suppose λ is an eigenvalue of (A.1), then we have

det(B−1(B −A)A−1 − λI) = 0

⇐⇒ det(B−1/2(B −A)1/2A−1(B −A)1/2B−1/2 − λI) = 0,

and therefore (A.1) and

B−1/2(B −A)1/2A−1(B −A)1/2B−1/2 (A.2)

have the same eigenvalues. Since (A.2) is symmetric positive definite, all eigenvalues are

positive, and hence (A.1) is positive definite.
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